Все разделы / Нефтяная промышленность /


Страницу Назад
Поискать другие аналоги этой работы

(520 )

Расчетная часть-Расчет бурового вертлюга УВ-250-Курсовая работа-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин

ID: 176861
Дата закачки: 20 Января 2017
Продавец: leha.se92@mail.ru (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Диплом и связанное с ним
Форматы файлов: Microsoft Word

Описание:
Расчетная часть-Расчет бурового вертлюга УВ-250: Расчет нагрузки на крюке, Определение основных параметров вертлюга, Расчет корпуса сальника высокого давления вертлюга на прочность и выносливость, Расчет корпуса сальника на статическую прочность, Расчет корпуса сальника на выносливость, Расчет сменного патрубка на статическую прочность и выносливость, Расчет грязевой трубы на статическую прочность, Расчет грязевой трубы на выносливость, Расчет подшипников основной опоры вертлюга, Расчет ствола вертлюга-Курсовая работа-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин

Комментарии: 2 Расчетная часть

2.1 Расчет нагрузки на крюке

Расчет ведется по методике, предложенной в литературе [8] .
На рисунке 10 предоставлена схема конструкции нефтяной скважины.

d – диаметр трубы,м; D – диаметр отдельного интервала скважины, м; 1 - кон- дуктор; 2 – промежуточная колонна; 3 – промежуточная колонна хвостовик; 4 – эксплуатационная колонна; 5 – цементное кольцо

Рисунок 10 - Схема конструкции скважины

В таблице 3 приведены исходные данные для расчета, а также в ней ука-зывается общий вес колонны. Вес погонного метра труб берём из литературы [9].
Вес кондуктора Qконд , кН , рассчитывается по формуле
Qконд = lконд ·     (1)
где lконд - длина кондуктора, м;
- вес 1 п.м. кондуктора, кН /м
Qконд = 200 · 0,951 = 190,2 кН
Вес промежуточной колонны Q п.к. , кН рассчитывается по формуле
Q п..к. = l п.к.· γ2   (2)
где l п.к. – длина промежуточной колонны, м
γ2 – вес 1 п.м. промежуточной колонны, кН/м,
Q п..к. = 2000 · 0,603 = 1206 кН
Вес эксплуатационной колонны Q э.к. , кН определяется по формуле
Q э..к. = l э.к.· γ3    (3)
где l э.к.- длина эксплуатационной колонны, м
γ3 - вес 1 п.м. эксплуатационной колонны, кН/м
Q э.к = 3500 · 0,314 = 1099 кН
Вес бурильной колонны Q б.к. , кН, рассчитывается по формуле
Q б.к = Qбт + Q убт     (4)
где Q бт - вес бурильной колонны, кН;
Qбт = lбт · γ4   (5)

где lбт – длина бурильных труб, м;
γ4 – вес 1 п.м. бурильных труб, кН/м
Qбт = 3200 · 0,306 = 979,2 кН
Qубт – вес колонны УБТ, кН
Q убт = l убт · γ5 ,      (6)
где l убт – длина труб УБТ, м
γ5 т – вес 1 п.м. труб УБТ, кН/м
Q убт = 300 · 1,56 = 468 кН
Qбк = 979,2 +468 = 1447,2 кН
С коэффициентом прихвата масса наиболее тяжелой колонны Q кр , кН составляет
Q кр = Qбк · Кп    (7)
где Кп – коэффициент прихвата, Кп = 1,3
Q кр = 1447,2 · 1,3 = 1881,36 кН
Нагрузка на крюке буровой установки составляет 1881,36 кН или 1,88 МН.


2.2 Определение основных параметров вертлюга

Расчет ведется по методике, предложенной в литературе [8] .
Статическая грузоподъемность вертлюга Q ст.в., кН, определяется по формуле
Q ст. в. = Q кр · к   (8)
где Q кр –наибольшая нагрузка от веса бурильной колонны, Q кр=1,88·10⁶;
Н;
к – коэффициент запаса, к = 1,4
Q ст. в. = 1,88·10⁶ · 1,4 =2,63 МН
Длительно действующая нагрузка Q в при вращении бурильной колон-ны в процессе бурения, МН,определяется по формуле
Q в = Q ст.в. · к1 · к2      (9)
где к1 – коэффициент, учитывающий снижение нагрузки на вертлюг за с счет цццоблегчения веса бурильной колонны при погружении вграствор, к1 = иии=0,85;
 к2 – коэффициент, учитывающий снижение нагрузки на вертлюг за ццццсчет создания нагрузки на долото при бурении, к2 = 0,85
Q в = 2,63 ·10⁶· 0,85 · 0,85 = 1,90 МН
Диаметр проходного сечения ствола вертлюга (внутренний диаметр сменного патрубка) определим из условия задания на проект, D = 0,075 м.
Максимальное рабочее давление промывочной жидкости P max раб , МПа, ориентировочно можно определить по методике Авакова В.А [6].
P max раб = 80· Lк2/3 · 10-3 (10)
где Lk – конечное значение глубины скважины, Lк = 3500 м;
Р max раб = 80 · 35002/3 · 10-3 = 18,4 МПа
Максимальное расчетное давление Р max , МПа, определяется по фор-муле
Р max = Р max раб · (1 + δ/2)    (11)
где δ – коэффициент неравномерности давления, δ = 0,15
Р max = 18,4·10⁶ · (1 + 0,15/2) = 19,8 МПа
Минимальное расчетное давлением Рmin , МПа определяется по формуле
P min = P max раб · (1 – δ/2)      (12)
Р min = 18,4·10⁶·(1 – 0,15/2) = 17,05 МПа [5]

2.3 Расчет корпуса сальника высокого давления вертлюга на проч-ность и выносливость

2.3.1 Расчет корпуса сальника на статическую прочность

Расчет ведется по методике, предложенной в литературе [8] .
Максимальное напряжение в пластине σmax , МПа
σmax = Км ·     (13)
где Км - коэффициент, учитывающий отношение размеров а и в, Км =
= 0,228
q - удельное испытательное давление, МПа
q = Рисп = 1,5 · P max раб   (14)
q = 1,5 · 18,4·10⁶ = 27,6 МПа
в - наружный радиус корпуса, в = 6,5 · 10 –2 м;
h - толщина пластины, h = 1 · 10-2 м
σmax = 0,228 · МПа
Коэффициент запаса прочности по пределу текучести n, определяется по формуле
n = &#963;т / &#963;max , 1,2 < n < 2,0 (15)
где &#963;т – предел текучести стали марки 10ХГСН, принятой для изготовле- йййййййййния корпуса сальника, &#963;т = 450 МПа;
n = 450 / 265,8 = 1,69
Условие прочности выполняется.
На рисунке 11 представлена схема к расчету корпуса сальника высоко-го давления вертлюга, а сам расчет приводится ниже.
Напряжение среза в сечении А-А &#964;ср, МПа, определяется по формуле
&#964;ср = Qср / F ср    (16)
где Q ср – нагрузка в сечении А-А, МН
Q ср = q &#903;
d2 – диаметр корпуса наружный, м
d2 = 2&#903;в      (17)
d2 = 2 &#903; 6,5 &#903; 10-2 = 0,13 м
d1 – диаметр корпуса внутренний, м
d1 = 2 &#903; а (18)
а – внутренний радиус корпуса, а = 4,5 &#903; 10-2 м;
d1 = 2 &#903; 4,5 &#903; 10 –2 = 0,09 м
Q ср = МН
F ср – площадь среза в сечении А-А, м2
F ср = &#903; d2 &#903; h (19)
F ср = 3,14 &#903; 0,13 &#903; 10-2 =0,41 &#903; 10-2 м2
&#964;ср = 209 МПа
Коэффициент запаса прочности n&#964; , определяется по формуле
n&#964; = [&#964;ср ] / &#964;ср , 1,25 < n&#964; < 2,5
где [&#964;ср ] – допускаемое напряжение среза, МПа
[&#964;ср] = 0,6 &#903; &#963;т
[&#964;ср]= 0,6 &#903; 450·10&#8310; = 270 МПа
n&#964; = 270 / 209 = 1,29 .
Условие прочности выполняется.

2.3.2 Расчет корпуса сальника на выносливость

Расчет ведется по методике, предложенной в литературе [8] .
Максимальное напряжение в пластине в сечении А-А &#963;max, МПа, опреде-ляется по формуле
&#963;max =     (20)
где q max - максимальное удельное давление жидкости, МПа
q max = Р max
q max = 19,8 МПа
&#963;max = МПа
Минимальное напряжение в пластине в сечении А-А &#963;min, МПа, опреде-ляется по формуле
&#963;min = Км &#903;    (22)
где q min – минимальное удельное давление жидкости, МПа
q min = Р min
q min = 17,05 МПа
&#963;min = МПа
Коэффициент запаса прочности n&#963; , определяется по формуле
n&#963; = nв &#903;  , 2,6 < &#963; < 3 (24)
где nв – коэффициент запаса прочности по пределу прочности,
nв = &#963;в / &#963;max , 2,6< nв < 3,0    (25)
&#963;в - предел прочности для стали марки 10ХГСН, &#963;в = 560 МПа
nв = 560/190 = 2,94
&#961; - отношение напряжения амплитуды цикла к среднему напряже-нию еееееееееецикла
&#961; = &#963;а / &#963;m      (26)
где &#963;а - амплитуда цикла, МПа
&#963;а = (&#963;max - &#963;min) / 2   (27)
&#963;а = (190 – 164,2) / 2 = 13,25 МПа
&#963;m - среднее напряжение цикла, МПа
&#963;m = (&#963;max + &#963;min) / 2     (28)
&#963;m = (190,7 +164,2) / 2 = 177,45 МПа
&#961; = 13,25 / 177,45 = 0,074
&#963;-1 - предел выносливости материала, &#963;-1 = 280МПа
&#966;&#963; - коэффициент, &#966;&#963; = 0,25
(К&#963; )р - коэффициент, (К&#963; )р = 2,66
n&#963; = 2,94 &#903;
Условие прочности выполняется.

Вывод

Сталь 10ХГСН с пределом текучести sт = 450 МПа, пределом прочно-сти
sв = 560 МПа и пределом выносливости s-1 = 280 МПа выбранная мной для изготовления корпуса быстросъёмного уплотнения удовлетворяет условиям прочности и выносливости .

2.4 Расчет сменного патрубка на статическую прочность и выносли-вость

2.4.1 Расчет грязевой трубы на статическую прочность

Расчет ведется по методике, предложенной в литературе [8] .
Приведенное напряжение по четвертной теории прочности &#963;пр , МПа, определяется по формуле
&#963;пр =    (29)
где &#963;1 – тангенциальное напряжение, МПа
&#963;1 =      (30)
где Рисп – испытательное давление, МПа
Рисп = 1,5 &#903; Рmax.раб    (31)
где Рmax.раб - максимальное рабочее давление промывочной жидкости, МПа
Рmax.раб = 19,8 МПа
Рисп = 19,8 &#903; 1,5 = 29,7 МПа
D - внутренний диаметр грязевой трубы, D = 0,075м;
t - толщина стенки трубы, м
t = 0,1 &#903; D     (32)
t = 0,1 &#903; 0,075 = 0,0075 м
&#963;1 = МПа
&#963;2 - осевое напряжение, МПа
&#963;2 = (33)
&#963;2 = МПа
&#963;3 - радиальное напряжение, МПа
&#963;3 = Рисп       (34)
&#963;3 = 29,7 МПа
&#963;пр = = 104 МПа
Коэффициент запаса прочности по пределу текучести n&#963; , определяется по формуле
n&#963; = &#963;т / &#963;пр , 1,25< n&#963; < 3     (35)
где &#963;т – предел текучести стали марки 08Ю, &#963;т = 205 МПа
n&#963; = 205 / 104 = 1,97
Условие прочности выполняется

2.4.2 Расчет грязевой трубы на выносливость

Расчет ведется по методике, предложенной в литературе [8] .
Максимальное приведенное напряжение по четвертой теории прочности &#963;пр max , МПа определяется по формуле
&#963;пр max = (36)
где &#963;1max – максимальное тангенциальное напряжение, МПа
&#963;1max =    (37)
где Рmax – максимальное расчетное давление, Рmax =19,8 МПа,
&#963;1max = МПа
&#963;2max – максимальное осевое напряжение, МПа
&#963;2max =      (38)
&#963;2max = МПа
&#963;3max – максимальное радиальное напряжение, МПа
&#963;3max = Рmax      (39)
&#963;3max = 19,8 МПа
&#963;пр max = МПа
Минимальное приведенное напряжение по четвертой теории прочности &#963;пр min , МПа, определяется по формуле
&#963;пр min = (40)
где &#963;1min – минимальное тангенциальное напряжение, МПа
&#963;1min =    (41)
Рmin – минимальное расчетное давление, Рmin = 17,05 МПа
&#963;1min = МПа
&#963;2min – минимальное осевое напряжение, МПа
&#963;2min =        (42)
&#963;2min = МПа
&#963;3min – минимальное радиальное напряжение, МПа
&#963;3min = Рmin
&#963;3min = 23,9 МПа
&#963;пр min = МПа
Среднее напряжение цикла &#963;max , МПа, определяется по формуле
&#963;max = (&#963;пр.max + &#963;пр.min) / 2     (44)
&#963;max = (69,3 + 59,6) / 2 = 64,45 МПа
Амплитуда цикла &#963;a , МПа определяется по формуле
&#963;a = (&#963;пр.max - &#963;пр.min) / 2   (45)
&#963;a = (69,3 – 59,6) / 2 = 4,85 МПа
Коэффициент запаса прочности по пределу выносливости n&#963; , определя-ется по формуле
n&#963; = nв &#903;  , 1,5 < n&#963; < 1,9 (46)
где nв – коэффициент запаса прочности по пределу прочности
nв = &#963;в / &#963;пр.max ,  2,6 < nв < 3,0   (47)
где &#963;в – предел прочности стали марки 08Ю &#963;в = 255 МПа
nв = 255 / 69,3 = 3,67
Условие прочности выполняется.
&#961; – отношение амплитуды цикла к среднему напряжению цикла
&#961; = &#963;а / &#963;max      (48)
&#961; = 4,85 / 64,45 = 0,75
где &#966;&#963; – коэффициент влияния асимметрии цикла, &#966;&#963; = 0,25;
(К&#963;)р – коэффициент, (К&#963;)р = 4,49;
&#963;-1 – предел выносливости материала, &#963;-1 = 110 МПа
n&#963; = 3,67 &#903;
Условие прочности выполняется.

Вывод

Сталь 08Ю с пределом текучести sт = 205 МПа, пределом прочности sв= = 255 МПа и пределом выносливости s-1 = 110 МПа выбранная мной для изготовления сменного патрубка уплотнения удовлетворяет условиям прочно-сти и выносливости .



2.5 Расчет подшипников основной опоры вертлюга

Расчет ведется по методике, предложенной в литературе [1] .
Основная опора является одним из определяющих элементов вертлюга, которая должна быть рассчитана в основном на долговечность и удовлетво-рять предъявляемым требованиям работы на всех режимах.
Эквивалентная нагрузка для упорного подшипника Qэ, КН, определяет-ся по формуле
Qэ = Qв &#903; Kб &#903; Кт &#903; Кк      (49)
где Qв – основная нагрузка на опору, Qв = 1,90 КН;
Kб – коэффициент безопасности, Kб = 1,4;
Кт – температурный коэффициент, Кт = 1,05;
Кк – кинематический коэффициент, Кк =1.
Qэ = 1,90 &#903; 1,4 &#903; 1,05 &#903; 1 = 2,79 кН
Расчетный ресурс L, час, определяется по формуле
L = (Cтр / Qэ)m   (50)
где Стр – динамическая грузоподъемность подшипника, МН;
m – показатель степени, m = 3,33
Cтр / Qэ = L1/m
При L = 3000 часов и n = 100 об/мин Cтр / Qэ = 2,37
Cтр = 2,37 &#903; Qэ     (51)
Cтр = 2,37 &#903; 2,79 = 6,61 кН
Выбираем подшипник № 889752 с размером 220 х 500 х 125 [1]

Вывод

Полученная расчетным путем необходимая величина динамической грузоподъемности подшипника равная 2,79 МН соответствует подшипнику № 8897 52 устанавливаемому на вертлюг УВ-250 и имеющим величину динами-ческой грузоподъемности 3,51 МН.


2.6 Расчет ствола вертлюга

Данный расчет выполняется на ЭВМ. Расчет выполнен для трех значе-ний предела прочности материала ствола (650, 750, 900 МПа). Допускаемая нагрузка на ствол 2,63 МН. Исходные данные к расчету ствола вертлюга при-ведены в таблице 5. Выводимые параметры расчета ствола показаны в таблице 6. Расчет представлен в предложении А. Результаты расчета представлены в приложении Б.

Вывод

Условие прочности будет выполнятся для марок сталей с пределом теку-чести &#61555;т = 600 МПа.

3 Монтаж

Вертлюги транспортируются в частичной упаковке или без нее. Перед пуском в эксплуатацию с них удаляется консервационная смазка и проверяется стопорение всей крепежной системы.
Перед началом эксплуатации после проверки подвижности хомута верт-люг подвешивают на крюк и убеждаются в подвижности вращения его ствола, который должен поворачиваться усилием одного рабочего, приложенного к ключу с плечом рычага не более 1 м.
Если никаких дефектов не обнаруживают, то смазывают резьбу ствола, устанавливают квадратную штангу в отверстие ротора на элеваторе и свинчи-вают их.
Во избежание порчи резьба сначала свинчивается вручную, после кре-питься машинным ключом «до отказа». Затем напорный рукав присоединяется к напорному патрубку и производиться оппресовка.[2]




4 Техническое обслуживание вертлюга

Если за основными узлами вертлюга не ведется тщательное наблюдение (своевременно не смазывают, не следят за температурой), то большие нагрузки вызывают преждевременный их износ. У нового вертлюга необходимо прове-рить следующее:
- надежность крепления отвода к крышке и нижнего фланца к корпусу вертлюга и всех остальных болтовых соединений;
- вращение ствола. В горизонтальном направлении он должен свободно вращаться от усилия, приложенного к ручке ключа длиной 1 м одним рабо-чим. Необходимо проверить также состояние замковой резьбы проводника. После этого вертлюг присоединяют к ведущей трубе. Если провернуть ствол не удается, то вертлюг бракуется;
- уровень масла в вертикальном положении, его качество. Требуется также убедиться в том, что оно не протекает через нижний уплотняющий саль-ник. Если необходимо, то нужно добавить масло или же его заменить;
- качество присоединения к фланцу отвода вертлюга бурового рукава в случае его разрыва или срыва со штуцера. Затем вертлюг должен быть постав-лен на обкатку без нагрузки в течение 1-1,5 ч. Если в момент его доставки скважина будет пробурена на большую глубину, то рекомендуется при обкатке постепенно доводить нагрузку до полного веса колонны.
Вертлюг, применявшийся на предыдущей буровой перед началом
эксплуатации должен быть тщательно промыт и заправлен свежим маслом. Во время бурения обслуживающий персонал обязан следить за:
- состоянием качества масла и его уровнем в соответствии с инструкци-ей;
- за температурой корпуса вертлюга, не допуская нагрева его свыше 800С;
- состоянием сальниковых уплотнений, не допуская пропусков промывочного раствора и масла.
Если креплением сальников не удается ликвидировать утечку, то необ-ходимо заменить часть сальниковых колец или весь их комплект. При транс-портировке вертлюга нижнее отверстие переводника и отверстие отвода долж-ны быть закрыты деревянными пробками во избежание попадания во внутрен-нюю часть ствола грязи и посторонних предметов. Замковая резьба перевод-ника должна быть смазана и защищена от механических повреждений специ-альным предохранительным колпаком [10].


Размер файла: 103,9 Кбайт
Фаил: Упакованные файлы (.rar)

   Скачать

   Добавить в корзину


    Скачано: 2         Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Нефтяная промышленность / Расчетная часть-Расчет бурового вертлюга УВ-250-Курсовая работа-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин

Вход в аккаунт:

Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
Ю-Money WebMoney Сбербанк или любой другой банк ПРИВАТ 24 qiwi PayPal Крипто-валюты

И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках

Здесь находится аттестат нашего WM идентификатора 782443000980
Проверить аттестат


Сайт помощи студентам, без посредников!