Лабораторные работы № 1,2,3,4,5 по дисциплине: Дискретная математика
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Лабораторная работа No 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
Лабораторная работа No 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Дата оценки: 03.09.2016
Рецензия:Уважаемый ,
Бах Ольга Анатольевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 1-5
Оценка:Зачет
Дата оценки: 03.09.2016
Рецензия:Уважаемый ,
Бах Ольга Анатольевна
Помогу с выполнением других работ и дисциплин.
E-mail: sneroy20@gmail.com
Похожие материалы
Лабораторные работы №1-5 по дисциплине: Дискретная математика. Все варианты
AlexBrookman
: 3 февраля 2019
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств
180 руб.
Лабораторные работы №1-5 по дисциплине: Дискретная математика. Все варианты
dubhe
: 19 февраля 2015
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , , \\) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множе
300 руб.
Лабораторные работы №1-5 по дисциплине: Дискретная математика (общий вариант)
Учеба "Под ключ"
: 1 октября 2016
Лабораторная работа No1 "Множества и операции над ними"
Задание
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , , \\) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После в
1100 руб.
Лабораторные работы №1-5 по дисциплине: Дискретная математика. Любой вариант.
Zergling
: 2 апреля 2015
Лабораторная №1 "Множества и операции над ними"
Лабораторная №2 "Отношения и их свойства"
Лабораторная №3 "Генерация перестановок"
Лабораторная №4 "Генерация подмножеств"
Лабораторная №5 "Поиск компонент связности графа"
150 руб.
Лабораторные работы №№1-5 по дисциплине: Дискретная математика. Вариант №6
xtrail
: 23 января 2014
Лабораторная работа No1
Постановка задачи
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается
1100 руб.
Контрольная и Лабораторные работы № 1-5 по дисциплине: Дискретная математика. Вариант № 5
IT-STUDHELP
: 29 января 2017
Контрольная работа. Вариант No 5
Задача No 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (A B) \\ (A C) = A (B\\C) б) A (B C)=(A B) (A C).
Задача No 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2]
400 руб.
Лабораторные работы №№1-5 по дисциплине: Дискретная математика (2-й семестр)
xtrail
: 9 февраля 2014
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множе
1350 руб.
Дискретная математика. Лабораторная работа № 1
svladislav987
: 16 апреля 2021
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Другие работы
Рабинович Сборник задач по технической термодинамике Задача 72
Z24
: 29 ноября 2025
Воздух, заключенный в баллон емкостью 0,9 м³ выпускают в атмосферу. Температура его в начале равна 27 ºС.
Найти массу выпущенного воздуха, если начальное давление составляло 9,32 МПа, после выпуска — 4,22 МПа, а температура воздуха снизилась до 17 ºС.
Ответ: М=51,8 кг.
120 руб.
Курсовая работа по дисциплине «Вычислительная математика»
m9c1k
: 24 октября 2010
Курсовая работа
по дисциплине
«Вычислительная математика»
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного перес
320 руб.
Экзамен по дисциплине "Основы визуального программирования". 5-й семестр. Билет № 2
mastar
: 23 декабря 2012
ЭКЗАМЕН
по дисциплине
«Основы визуального программирования»
Билет № 2
Билет 2
по дисциплине “Основы визуального программирования”
Вопрос 1. Разработать приложение, выполняющее следующие действия:
по нажатию на пункт меню (компонент TMainMenu) Start формируется двумерный массив Mas размером N x M с помощью генератора случайных чисел; для отображения массива на экране используется компонент TStringGrid;
размер массива Mas[N, M] задается c помощью пунктов меню: Строки, Столбцы.
по нажатию на пу
125 руб.
Теоретические основы теплотехники в примерах и задачах ИГЭУ Раздел 2.3 Задача 7
Z24
: 21 октября 2025
Из воды, кипящей в большом объеме при давлении 1,98 бар, необходимо получить 300 кг/час сухого насыщенного водяного пара. Найти необходимую для этого площадь поверхности нагрева, если температура поверхности 131 ºС.
150 руб.