Экзамен «Алгебра и геометрия». Билет №9
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где...
3. Даны векторы (рис)
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет (рис)
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где...
3. Даны векторы (рис)
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет (рис)
Дополнительная информация
Работа зачтена
Похожие материалы
Алгебра и геометрия. Экзамен БИЛЕТ № 9
Галина7
: 21 мая 2015
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
Обозначим:
A = -21-11
B = 241-1
C = -93-17
3. Даны векторы
Найти .
a ̅+b ̅=(2-3; -3+1;1+2)=(-1;-2;3)
b ̅×c ̅=|(i&j&k@-3&1&2@1&2&3)|=i(3-4)-j(-9-2)+k(-6-1)=(-1;11;-7)
a ̅×b ̅=|(i&j&k@-1&-2&3@-1&11&-1)|
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из верши
70 руб.
Экзамен по предмету "Алгебра и Геометрия". Билет №9
ashley
: 24 февраля 2014
БИЛЕТ № 9
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора , если .
250 руб.
СибГУТИ. Алгебра и геометрия. Зачет, экзамен. Билет №9
Дмитрий103
: 10 июня 2017
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
_____________
Зачет. Билет №9, алгебра и геометрия
Uiktor
: 17 декабря 2015
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
. A=(-2 1) B=(2 4) C=(-9 3)
(-1 1) (1 -1) (-1 7)
3. Даны векторы
a=(2;-3;1) b=(-3;1;2) c=(1;2;3)
найти
(a+b)*(b*c)
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническом
100 руб.
Алгебра и геометрия, экзамен, билет №9, семестр 1, зачет
Е2
: 9 июня 2018
Билет № 9
Задание 1. Кривые второго порядка. Канонические уравнения. Основные свойства.
Задание 2. Решить матричное уравнение , где
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
400 руб.
Алгебра и геометрия. Экзамен
pepol
: 28 января 2013
БИЛЕТ № 13.
1. Теорема Кронекера - Капелли.
Система линейных алгебраических.....
2. Взаимное расположение двух прямых в пространстве.
Взаимное расположение двух прямых в пространстве характеризуются следующими
3. Решить матричное уравнение:
200 руб.
Экзамен. Алгебра и Геометрия.
ivi
: 31 января 2012
1. Скалярное произведение векторов и его свойства.
Скалярным произведением векторов и называется число, равное произведению их модулей на косинус угла между ними:
2. Классификация кривых второго порядка.
Кривая второго порядка – это геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида , в котором по крайней мере один из коэффициентов отличен от нуля.
3. Найти значение матричного многочлена , если , где .
4. Найти уравнение плоскости, п
200 руб.
Алгебра и геометрия. Экзамен.
andrshap
: 31 мая 2010
1. Декартова система координат. Направляющие косинусы вектора.
2. Гипербола и её свойства.
3. Доказать, что векторы
образуют базис и найти координаты вектора в этом базисе.
4. Найти обратную матрицу для матрицы
5. Найти координаты фокусов эллипса, если его малая полуось равна 5, а эксцентриситет равен 12/13.
5 руб.
Другие работы
Контрольная работа №1 по дисциплине "Основы теории искусственного интеллекта" 6 вариант 6 семестр
mastar
: 7 февраля 2013
Контрольная работа №1
по дисциплине
Основы теории искусственного интеллекта
Задание:
Студентам предлагается составить свой небольшой диалог на произвольную тему и соответствующую программу (типа doctor), реализующую этот диалог. Отладить программу, обеспечив её работоспособность, сохранить на электронном носителе для предъявления в ВУЗе, распечатку диалога и программы выслать для проверки в ВУЗ.
125 руб.
Из истории народного образования города Москвы
evelin
: 26 августа 2013
Учащейся группы 11В Чигириновой Светланы
В феодальной Москве письменность и образование были привилегиями духовенства и знати. В московских и подмосковных монастырях, княжеских и боярских домах велась переписка и перевод книг, подготовка книжных писцов из монахов и светских доброхотов. Мальчиков обучали книжным хитростям в монастырских и церковных школах и на основании договора у частных мастеров грамоты.
Деловые бумаги того времени – завещательные письма, межкняжеские договоры и др., а также л
15 руб.
Нахождение глобального минимума функций с помощью генетических алгоритмов
alfFRED
: 3 ноября 2012
Задание: С помощью генетического алгоритма решить следующие задачи оптимизации:
1. f(x,y)=(x-0.4)^2+(y-0.6)^4- min;
2. f(x,y)+sin(10x)sin(10y)- min;
3. система x+y- min, при f(x,y) =1
Найти глобальные минимумы и показать, что решение верно. Программы должны отличаться только видом целевой функции.
Общий менеджмент
Krab
: 6 апреля 2021
Задание 1. Заполните таблицы.
1. Определите соответствие стадии жизненного цикла и особенности организационной культуры
2. Приведите конкретный пример миссии, видения и целей (в соответствии с требованиями SMART)
3. Определите основные черты организационных структур управления:
4. Выберите для каждого примера соответствующий ему, на Ваш взгляд, тип организационной структуры. Объясните свой выбор.
5. Проранжируйте типы стилей по степени жесткости (от 1 до 12, где 1 самый жесткий):
6. Приведите
230 руб.