Алгебра и геометрия, Билет 4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
Похожие материалы
Алгебра и геометрия. Билет №4
rai9247
: 19 апреля 2019
Дисциплина «Алгебра и геометрия»
1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Алгебра и геометрия. Экзамен. Билет №4
ANNA
: 13 мая 2017
Задание 1. Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2. Решить матричное уравнение
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
Более подробно смотрите во вложенном скриншоте
250 руб.
Экзамен. Билет №4. Алгебра и геометрия
Efimenko250793
: 25 января 2016
1 Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
2 Решить матричное уравнение , где
3 Даны векторы , , .
Найти .
4 Даны координаты вершин пирамиды
, , , .
Найти координаты точки пересечения плоскости с высотой пирамиды, опущенной из вершины на эту плоскость.
5 Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
500 руб.
Зачетная работа по алгебре и геометрии/ билет 4
ksushkin
: 25 июля 2018
Зачетная работа по алгебре и геометрии
Оценена Ваша работа по предмету:
Алгебра и геометрия
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 17.06.2016
Рецензия:
Уважаемая ,
Ваша работа выполнена хорошо.
Агульник Владимир Игоревич
700 руб.
Экзаменационная работа. Алгебра и Геометрия. Билет №4.
rimmabatoeva
: 18 июня 2018
Экзамен по предмету Алгебра и Геометрия. Билет 4
Полностью все задания в виде скриншота из билета в приложенном файле JPG
Задание 1: Исследование систем линейных уравнений. Теорема Кронекера-Капелли. Однородные системы.
Задание 2: Решить матричное уравнение
Задание 3: Даны векторы:
Найти
Задание 4: Даны координаты вершин пирамиды:
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
Задание 5. Привести к каноническому виду ура
150 руб.
Алгебра и геометрия. Итоговая работа. Билет №4
Unk
: 16 февраля 2018
1.Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
Однородные системы.
2. Решить матричное уравнение , где
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
40 руб.
Экзамен gо дисциплине: Алгебра и геометрия. Билет № 4
ilin99
: 12 мая 2011
Экзамен
по дисциплине: Алгебра и геометрия
БИЛЕТ № 4
1. Формулы Крамера для решения систем линейных уравнений.
2. Уравнение линии на плоскости. Расстояние между точками. Деление отрезка пополам.
3. Найти острый угол между диагоналями параллелограмма, построенного на векторах
4. Найти уравнение линии центров окружностей:
5. Через точку пересечения прямых и провести прямую, делящую отрезок АВ, где А (4; 3), В (0; 1), пополам.
100 руб.
Зачет по дисциплине: Алгебра и геометрия Вариант:05 Билет № 4
Dimanank
: 23 февраля 2012
БИЛЕТ № 4
1. Формулы Крамера для решения систем линейных уравнений.
Метод Крамера (формулы Крамера ) -способ решения систем линейных уравнений, у которых количество переменных равно количеству уравнений. Применение метода Крамера возможно, если определитель
2. Уравнение линии на плоскости. Расстояние между точками. Деление отрезка пополам
3. Найти острый угол между диагоналями параллелограмма, построенного на векторах , .
4.Найти уравнение линии центров окружностей:
5. Через т
50 руб.
Другие работы
Розподіл ролей в сім'ї як фактор тривалого шлюбу
alfFRED
: 12 октября 2013
Вступ
Розділ 1. Теоретико-методологічні засади соціального домінування та ролевої структури сім’ї
1.1 Загальні відомості шлюбу
1.2 Динаміка ролевої структури сім’ї в історії
1.3 Мотиви визнання чоловічого/жіночого верховенства
Розділ 2. Характеристика методик для діагностики сімейних відносин
2.1 Методи вивчення особливостей спілкування, взаємин та індивідуальності подружжя
2.2 Методи дослідження індивідуальності подружжя
2.3 Методи вивчення етично-психологічних та дитячо-батьківських ст
Лабораторные работы №1-3 по дисциплине: Вычислительная математика. Вариант 5
xtrail
: 22 июля 2024
Лабораторная работа №1
«Линейная интерполяция»
Задание на лабораторную работу
1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
900 руб.
Экзамен. Алгебра и геометрия. 1семестр. 13 билет
Azeke3005
: 2 ноября 2011
1. Теорема Кронекера – Капелли.
2. Взаимное расположение двух прямых в пространстве.
3. Решить матричное уравнение:
4. Найти уравнение параболы с вершиной в начале координат, если парабола симметрична относительно оси Ох и проходит через точку А (–1;3).
5. Найти уравнение плоскости, проходящей через прямые
150 руб.
Основы гидравлики МИИТ 2018 Задача 1.3 Вариант 9
Z24
: 1 декабря 2025
Участок трубопровода заполнен водой при атмосферном давлении.
Определить повышение давления в трубопроводе при нагреве воды на Δt°С и закрытых задвижках на концах участка.
Коэффициенты температурного расширения и объемного сжатия принять равными: βt=0,000014 1/°С; βw=0,0005 1/МПа.
120 руб.