Контрольная работа. «Математический анализ». Часть 2-я. Вариант №4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант No 4
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Дисциплина «Математический анализ». Часть 2.
Вариант No 4
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Дополнительная информация
Ваша работа выполнена хорошо. Агульник Владимир Игоревич
Похожие материалы
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
Контрольная работа по дисциплине. Математический анализ (часть 2). Вариант №4
lfesta
: 21 января 2015
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями
150 руб.
Вариант №4. Математический анализ (Часть 2)
MK
: 18 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3.Вычислить криволинейный интеграл по координатам
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
150 руб.
Дисциплина «Математический анализ». Часть 2-я. Вариант № 4
lllog
: 25 февраля 2016
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где – дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
200 руб.
Математический анализ (часть 2) Контрольная работа №1
Ekaterina4
: 19 января 2015
Контрольная работа 1
1.Дана функция z=z(x,y), точка A(x0,y0) и вектор a(a_x,a_y). Найти:
1) grad z в точке A; 2) производную в точке A в направлении вектора a.
z=arcsin(x^2/y), А(1,2), а(5,-12)
2.Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0)
x^4 =a^2 (x^2-〖3y〗^2 )
3. Вычислить с помощью тройного интеграла обьем тела, ограниченного указанными поверхностями: z=0, x^2+y^2=z, x^2+y^2=4
Иссле
600 руб.
Математический анализа. Контрольная работа. Вариант №4
Leprous
: 20 октября 2014
Задание 1
Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
a) grad z в точке А.
б) производную в точке А по направлению вектора a.
Задание 2
Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задание 3
Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с ко
10 руб.
Математический анализ. Контрольная работа. (Вариант №4)
krakadil
: 3 октября 2014
1. Даны функция , точка A(1; 1) и вектор a→(2; –1). Найти
2. Вычислить с помощью двойного интеграла в полярных координатах
3. Вычислить с помощью тройного интеграла объем тела, ограниченного
4. Даны векторное поле и плоскость p: –x + 2y + 2z – 4 = 0,
100 руб.
Контрольная работа. Математический анализ. Часть 2. Вариант 2
rimmabatoeva
: 18 июня 2018
Контрольная работа. Математический анализ. Часть 2. Вариант 2
Полное описание заданий на картинке JPG во вложении
Задание 1. Вычислить несобственный интеграл или доказать его расходимость
Задание 2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
Задание 3. Вычислить криволинейный интеграл по координатам
Задание 4. Найти общее решение дифференциального уравнения первого порядка
Задание 5. Решить задачу Коши
100 руб.
Другие работы
Проектирование локальной сети. Вариант № 2
АЛЕКСАНДР4
: 24 сентября 2014
ВВЕДЕНИЕ
1 ОБЩИЕ СВЕДЕНИЯ
1.1 Топология ЛВС
1.2 Характеристика сред передачи данных
1.3 Характеристика сетевых операционных систем
2 ПРОЕКТИРОВАНИЕ ЛВС
2.1 Выбор конфигурации сети
2.2 Определение конфигурации t-3 ПК
2.3 Установка операционной системы для сервера
2.4 Схема соединения ПК
2.5 Создание электронного адреса в программе Internet Exploer
2.6 Создание нового сетевого подключения
2.7 Характеристика среды передачи для Ethernet
2.8 Расчет, подтверждающий работоспособност
100 руб.
Задача №1 из контрольной работы №1 (вариант 10)
ilya01071980
: 26 августа 2017
Контрольная работа 1
Вариант 10
Задача 1
Стабилизация напряжения.
1. Выберите диод, выполняющий заданную функцию. При выборе диода учтите дополнительное условие выбора: Величина ICТ max=53 мА.
2. Расшифруйте маркировку выбранного диода.
3. Перечертите его характеристику и определите по ней заданные параметры; укажите их физический смысл.
4. Начертите схему включения диода и кратко опишите принцип ее работы.
Решение:
1. Выбираем диод КС515А.
2.
1 элемент К – кремниевый
2 элемент
50 руб.
Краснощеков Задачник по теплопередаче Задача 1.15
Z24
: 24 сентября 2025
Вычислить тепловой поток через 1 м² чистой поверхности нагрева парового котла и температуры на поверхностях стенки, если заданы следующие величины: температура дымовых газов tж1 = 1000ºС, кипящей воды tж2 = 200ºС; коэффициенты теплоотдачи от газов к стенке α1 = 100 Вт/(м²·ºС) и от стенки к кипящей воды α2 = 5000 Вт/(м²·ºС).
Коэффициент теплопроводности материала стенки λ = 50 Вт/(м·ºС) и толщина стенки δ = 12 мм.
Ответ: q = 76628 Вт/м². Температура на поверхностях стенки tc1 = 234ºС и tc2 =
150 руб.
Чертёж Деталь Седло бурового долота
leha.nakonechnyy.2016@mail.ru
: 11 июня 2025
Чертёж Деталь Седло бурового долота -Деталь-Деталировка-Сборочный чертеж-Чертежи-(Формат Компас 3D -CDW, Autocad Autodesk-DWG, Adobe-PDF, Picture-Jpeg)-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
167 руб.