Лабораторная работа №4 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №7

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon LAB4.EXE
material.view.file_icon lab4.pas
material.view.file_icon OUTPUT.TXT
material.view.file_icon Лабораторная 4.doc
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.

Вариант 7
Вершина 1.
0 0 34 7 0 0
0 0 0 23 0 43
34 0 0 11 0 50
7 23 11 0 58 0
0 0 0 58 0 41
0 43 50 0 41 0

Исходный текст программы
Результаты работы программы

Дополнительная информация

Зачет без замечаний!
Дата сдачи: май 2017 г.
Преподаватель: Галкина М.Ю.
В архиве отчет + файлы программы (написана на Pascal).
Помогу с другим вариантом.

Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
Лабораторная работа №3 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Вариант 3
User 1231233 : 31 января 2012
23 руб.
Лабораторная работа №4 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №4
1. Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 4: Вершина 3. 0 45 0 44 0 0 45 0 18 47 21 0 0 18 0
User SibGOODy : 22 июля 2018
200 руб.
promo
Лабораторная работа №4 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант 4
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифр
User Udacha2013 : 8 ноября 2014
200 руб.
Лабораторная работа № 4 по дисциплине Теория сложности вычислительных процессов и структур. Вариант 8
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 8 Вершина 0.
User Некто : 16 сентября 2018
50 руб.
Лабораторная работа №4 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №5
Лабораторная работа №4 Задание Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры. Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User IT-STUDHELP : 21 июня 2017
48 руб.
Лабораторная работа №4 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №5
Лабораторная работа №4 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 8 Вершина 0. 0 0 38 53 0 0 0 0 0 43 0 0 38 0 0 31 0
User Amor : 28 октября 2013
250 руб.
promo
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 7.
Задача о перемножении матриц. Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант №7 М1[9x2], M2[2x4], M3[4x5], М4[5x8], M5[8x3], M6[3x2], M7[2x4], M8[4x6].
User zhekaersh : 6 марта 2015
70 руб.
Механика Задача 2.35 Рисунок 5 Вариант 1
Для составной конструкции АВС определить реакции опор А и В, возникающие под действием сосредоточенных сил Р1 и Р2, алгебраического момента пары сил М и равномерно распределенной нагрузки интенсивностью q.
User Z24 : 19 ноября 2025
250 руб.
Механика Задача 2.35 Рисунок 5 Вариант 1
Расчет привода к вертикальному элеватору
КУРСОВОЙ ПРОЕКТ Дисциплина: «Детали машин и основы конструирования» Вариант 4.3. Привод к вертикальному элеватору Дополнительные требования 1. Спроектировать привод при соблюдении отношения диаметра ведомого шкива к диаметру червячного колеса в пределах 0,8…1,2. 2. Спроектировать для входного вала редуктора муфту упругую со змеевидными пружинами. Исходные данные Производительность . Скорость ленты . Диаметр барабана . Высота элеватора . Коэффициент использования суточный . Коэффициент ис
User 090787 : 27 января 2010
Инженерная графика. Вариант 30 - Корпус в сборе
Все выполнено в программе КОМПАС 3D v16. Инженерная графика. Практикум по чертежам сборочных единиц. Под редакцией П.В. Зелёного Задание 30. Корпус в сборе Сборочная единица «Корпус в сборе» содержит три детали. Вкладыш 2 помещается в корпус 1. Крышка 3, зажимая вкладыш, соединяется с корпусом винтами 5 (М8х28 ГОСТ 1491-80). Во вкладыш 2 ввинчены на глубину 24 мм болты 4 (М8х30 ГОСТ 7798-70), которые фиксируются от самоотвинчивания гайками 6 (М8 ГОСТ 5916-70, низкая, Н = 4 мм). В комплект р
User Чертежи : 2 июня 2023
250 руб.
Инженерная графика. Вариант 30 - Корпус в сборе promo
Насос масляный-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Насос масляный-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
400 руб.
Насос масляный-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
up Наверх