Расчёт электродиафрагменного насоса ЭДН5 – 4 – 1600-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Расчёт электродиафрагменного насоса ЭДН5 – 4 – 1600-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
1.4 Обоснование основных параметров насоса ЭДН5 4 – 1600
1.4.1 Определение подачи насоса
Подачей Q насоса называется расход жидкости через напорный (выходной) патрубок. Диафрагменные насосы относятся к объемным насосам.
Подача насоса определяется по формуле:
, (1)
где: V – объем рабочей камеры насоса, м3/сут;
n – число двойных ходов, об/мин;
k – поправочный коэффициент;
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
V= 3,89∙10-6 м3;
n=750 об/мин;
k= 0,95.
Подставив данные в формулу (1) найдем подачу насоса:
м3/сут.
1.4 Обоснование основных параметров насоса ЭДН5 4 – 1600
1.4.1 Определение подачи насоса
Подачей Q насоса называется расход жидкости через напорный (выходной) патрубок. Диафрагменные насосы относятся к объемным насосам.
Подача насоса определяется по формуле:
, (1)
где: V – объем рабочей камеры насоса, м3/сут;
n – число двойных ходов, об/мин;
k – поправочный коэффициент;
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
V= 3,89∙10-6 м3;
n=750 об/мин;
k= 0,95.
Подставив данные в формулу (1) найдем подачу насоса:
м3/сут.
Дополнительная информация
1.4 Обоснование основных параметров насоса ЭДН5 4 – 1600
1.4.1 Определение подачи насоса
Подачей Q насоса называется расход жидкости через напорный (выходной) патрубок. Диафрагменные насосы относятся к объемным насосам.
Подача насоса определяется по формуле:
, (1)
где: V – объем рабочей камеры насоса, м3/сут;
n – число двойных ходов, об/мин;
k – поправочный коэффициент;
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
V= 3,89∙10-6 м3;
n=750 об/мин;
k= 0,95.
Подставив данные в формулу (1) найдем подачу насоса:
м3/сут.
1.4.2 Напор насоса ЭДН5 4 – 1600
Работа насоса характеризуется его подачей, напором, потребляемой мощностью, к. п. д. и частотой вращения. Напор Н представляет собой разность энергий единицы веса жидкости в сечении потока после насоса и перед ним. В поле сил тяжести напор насоса равен разности полного напора жидкости после насоса и перед ним выражается в метрах столба перемещаемой жидкости и определяется по формуле:
, (2)
где РН, zН, VН, - давление, высота и скорость потока при выходе из насоса на стороне нагнетания;
РВ, zВ, VВ, - давление, высота и скорость потока при входе в насос.
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
Q= 4 м3/сут=0,0012 м3/с;
= 0,36;
= 1000 кг/м3;
VН= 0,48 м/с;
VВ= 13,86 м/с;
zН= 1,5 м;
zВ= 0 м;
РН= 16 МПа;
РВ= 0,39 МПа;
g= 9,81 м/с2.
Напор насоса определяем по формуле (2):
м.
1.4.3 Мощность насоса
Потребляемой мощностью насоса называется энергия, подводимая к насосу от двигателя за единицу времени. Потребляемую мощность можно определить так. Каждая единица веса жидкости, прошедшая через насос, приобретает энергию в количестве Н м; за единицу времени через насос проходит единица веса жидкости. Для диафрагменного насоса мощность можно определить по формуле:
, (3)
где: k – переводной коэффициент при Р = 16 МПа;
– коэффициент полезного действия.
Подставив числовые значения в формулу (3), получим:
кВт
При соединении насоса с двигателя при помощи конического редуктора мощность двигателя определяется по формуле:
, (4)
где: k коэффициент запаса мощности двигателя в зависимости от мощности насоса (k=1,03).
Мощность двигателя находим по формуле (4):
кВт
Определение потерь давления в клапанах при прохождении жидкости.
Потери давления в клапанах определяются по формуле:
, (5)
где: Δркл.в. - потери давления во всасывающем клапане, Па;
Δркл.н. - потери давления в нагнетательном клапане, Па.
Потери давления во всасывающем клапане:
, (6)
где: μк - коэффициент расхода клапана, зависит от числа Re.
Число Re определяется по формуле:
, (7)
По диаграмме, зависимости коэффициента расхода клапанов насоса от числа Re, приведенной в [4], определяем μк = 0,22.
Тогда потери давления во всасывающем клапане определяются по формуле (6):
Потеря давления в нагнетательном клапане определяется аналогичным образом по формулам (6) и (7).
Число Рейнольдса для нагнетательного клапана:
Потеря давления в нагнетательном клапане:
Таким образом, потеря давления в клапанах при прохождении через них жидкости по формуле (5):
Далее определим коэффициента наполнения скважинного насоса.
Коэффициент наполнения определяется по формуле:
, (8)
где: m – относительный объем вредного пространства насоса. Для насоса ЭДН принимается m=0,1;
R – часть газа, поступаемая в насос вместе с единицей объема жидкости;
Г‘ - газосодержание у приема насоса, м3/ м3.
Газосодержание у приема насоса определяется по формуле:
(9)
Часть газа, поступающая в насос определяется по формуле:
, (10)
где: u – скорость движения газа относительно жидкости, м/с. При обводненности жидкости больше 45 % принимается u=0,17 м/с;
f3 – площадь поперечного зазора между эксплуатационной колонной и корпусом насоса, м2.
Площадь поперечного сечения зазора определяется по формуле:
(11)
где: dнас - наружный диаметр насоса, м.
Коэффициент R по формуле (10):
Тогда коэффициент наполнения находим по формуле (8):
1.4.4 Расчёт распределения температуры по глубине скважины оборудованной УЭДН
Распределение температуры по глубине скважины зависит от способа
эксплуатации, дебита скважины, диаметра скважины или НКТ, обводненности продукции и других параметров.
В общем случае распределение температуры можно рассчитать используя уравнение теплопроводности:
, (12)
где: t(h) – температура на глубине h, отсчитываемая от забоя скважины, 0С;
tЗАБ – температура на забое скважины (принемается равной пластовой температуре tПЛ), 0С;
ω – геотермический градиент, град/м;
с – удельная теплоёмкость жидкости, Дж/(кг град);
ρ – плотность жидкости, кг/м3;
q – объёмный расход жидкости, м3/с;
К – коэффициент теплопередачи через стенку трубы, Вт/(м2 град);
d – внутренний диаметр НКТ, м.
Наиболее трудно определяется коэффициент теплопередачи. Обобщение температурных режимов работы добывающих скважин и использование уравнение (12) позволяют записать следующие выражения для расчета температуры по глубине скважины оборудованной УЭДН:
при расчёте от забоя скважины;
, (13)
где: St – критерий Статона;
tпл – температура пласта скважины, 0С;
h – высота отсчитываемая от забоя, м;
Н – глубина отсчитываемая от устья, м;
α – угол отклонения скважины от вертикали, градус.
при расчёте от устья скважины;
, (14)
где: tу – температура на устье скважины, 0С.
Зависимость критерия Стантона от массового дебита скважины записывается в следующем виде:
, (15)
где: QМ – массовый дебит скважины, т/сут.
Распределение температуры по глубине скважины можно установить по следующему выражению:
, (16)
где: Тпл – пластовая температура, К;
Нкп – глубина кровли пласта, м;
Н – текущая глубина отсчитываемая от устья скважины, м;
q – дебит жидкости, приведенный к стандартным условиям, м3/с;
d – диаметр скважины, м.
Геотермический градиент:
, (17)
где: Тнс – температура нейтрального слоя, К;
Ннс – глубина нейтрального слоя, м.
При известном массовом дебите скважины Qм и известной плотности нефти в стандартных условиях ρнд дебит жидкости нефти рассчитывается так:
1.4.1 Определение подачи насоса
Подачей Q насоса называется расход жидкости через напорный (выходной) патрубок. Диафрагменные насосы относятся к объемным насосам.
Подача насоса определяется по формуле:
, (1)
где: V – объем рабочей камеры насоса, м3/сут;
n – число двойных ходов, об/мин;
k – поправочный коэффициент;
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
V= 3,89∙10-6 м3;
n=750 об/мин;
k= 0,95.
Подставив данные в формулу (1) найдем подачу насоса:
м3/сут.
1.4.2 Напор насоса ЭДН5 4 – 1600
Работа насоса характеризуется его подачей, напором, потребляемой мощностью, к. п. д. и частотой вращения. Напор Н представляет собой разность энергий единицы веса жидкости в сечении потока после насоса и перед ним. В поле сил тяжести напор насоса равен разности полного напора жидкости после насоса и перед ним выражается в метрах столба перемещаемой жидкости и определяется по формуле:
, (2)
где РН, zН, VН, - давление, высота и скорость потока при выходе из насоса на стороне нагнетания;
РВ, zВ, VВ, - давление, высота и скорость потока при входе в насос.
Таким образом, имея исходные данные по насосу ЭДН5 4-1600 можно определить:
Q= 4 м3/сут=0,0012 м3/с;
= 0,36;
= 1000 кг/м3;
VН= 0,48 м/с;
VВ= 13,86 м/с;
zН= 1,5 м;
zВ= 0 м;
РН= 16 МПа;
РВ= 0,39 МПа;
g= 9,81 м/с2.
Напор насоса определяем по формуле (2):
м.
1.4.3 Мощность насоса
Потребляемой мощностью насоса называется энергия, подводимая к насосу от двигателя за единицу времени. Потребляемую мощность можно определить так. Каждая единица веса жидкости, прошедшая через насос, приобретает энергию в количестве Н м; за единицу времени через насос проходит единица веса жидкости. Для диафрагменного насоса мощность можно определить по формуле:
, (3)
где: k – переводной коэффициент при Р = 16 МПа;
– коэффициент полезного действия.
Подставив числовые значения в формулу (3), получим:
кВт
При соединении насоса с двигателя при помощи конического редуктора мощность двигателя определяется по формуле:
, (4)
где: k коэффициент запаса мощности двигателя в зависимости от мощности насоса (k=1,03).
Мощность двигателя находим по формуле (4):
кВт
Определение потерь давления в клапанах при прохождении жидкости.
Потери давления в клапанах определяются по формуле:
, (5)
где: Δркл.в. - потери давления во всасывающем клапане, Па;
Δркл.н. - потери давления в нагнетательном клапане, Па.
Потери давления во всасывающем клапане:
, (6)
где: μк - коэффициент расхода клапана, зависит от числа Re.
Число Re определяется по формуле:
, (7)
По диаграмме, зависимости коэффициента расхода клапанов насоса от числа Re, приведенной в [4], определяем μк = 0,22.
Тогда потери давления во всасывающем клапане определяются по формуле (6):
Потеря давления в нагнетательном клапане определяется аналогичным образом по формулам (6) и (7).
Число Рейнольдса для нагнетательного клапана:
Потеря давления в нагнетательном клапане:
Таким образом, потеря давления в клапанах при прохождении через них жидкости по формуле (5):
Далее определим коэффициента наполнения скважинного насоса.
Коэффициент наполнения определяется по формуле:
, (8)
где: m – относительный объем вредного пространства насоса. Для насоса ЭДН принимается m=0,1;
R – часть газа, поступаемая в насос вместе с единицей объема жидкости;
Г‘ - газосодержание у приема насоса, м3/ м3.
Газосодержание у приема насоса определяется по формуле:
(9)
Часть газа, поступающая в насос определяется по формуле:
, (10)
где: u – скорость движения газа относительно жидкости, м/с. При обводненности жидкости больше 45 % принимается u=0,17 м/с;
f3 – площадь поперечного зазора между эксплуатационной колонной и корпусом насоса, м2.
Площадь поперечного сечения зазора определяется по формуле:
(11)
где: dнас - наружный диаметр насоса, м.
Коэффициент R по формуле (10):
Тогда коэффициент наполнения находим по формуле (8):
1.4.4 Расчёт распределения температуры по глубине скважины оборудованной УЭДН
Распределение температуры по глубине скважины зависит от способа
эксплуатации, дебита скважины, диаметра скважины или НКТ, обводненности продукции и других параметров.
В общем случае распределение температуры можно рассчитать используя уравнение теплопроводности:
, (12)
где: t(h) – температура на глубине h, отсчитываемая от забоя скважины, 0С;
tЗАБ – температура на забое скважины (принемается равной пластовой температуре tПЛ), 0С;
ω – геотермический градиент, град/м;
с – удельная теплоёмкость жидкости, Дж/(кг град);
ρ – плотность жидкости, кг/м3;
q – объёмный расход жидкости, м3/с;
К – коэффициент теплопередачи через стенку трубы, Вт/(м2 град);
d – внутренний диаметр НКТ, м.
Наиболее трудно определяется коэффициент теплопередачи. Обобщение температурных режимов работы добывающих скважин и использование уравнение (12) позволяют записать следующие выражения для расчета температуры по глубине скважины оборудованной УЭДН:
при расчёте от забоя скважины;
, (13)
где: St – критерий Статона;
tпл – температура пласта скважины, 0С;
h – высота отсчитываемая от забоя, м;
Н – глубина отсчитываемая от устья, м;
α – угол отклонения скважины от вертикали, градус.
при расчёте от устья скважины;
, (14)
где: tу – температура на устье скважины, 0С.
Зависимость критерия Стантона от массового дебита скважины записывается в следующем виде:
, (15)
где: QМ – массовый дебит скважины, т/сут.
Распределение температуры по глубине скважины можно установить по следующему выражению:
, (16)
где: Тпл – пластовая температура, К;
Нкп – глубина кровли пласта, м;
Н – текущая глубина отсчитываемая от устья скважины, м;
q – дебит жидкости, приведенный к стандартным условиям, м3/с;
d – диаметр скважины, м.
Геотермический градиент:
, (17)
где: Тнс – температура нейтрального слоя, К;
Ннс – глубина нейтрального слоя, м.
При известном массовом дебите скважины Qм и известной плотности нефти в стандартных условиях ρнд дебит жидкости нефти рассчитывается так:
Похожие материалы
Газосепаратор ГС2-1,6-1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 4 июня 2016
Газосепаратор ГС2-1,6-1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
596 руб.
Газосепаратор ГС 2-1,6-1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
nakonechnyy_lelya@mail.ru
: 17 января 2018
Газосепаратор ГС 2-1,6-1600-Самарский Государственный Технический университет
Кафедра разрабаротки и эксплуатации нефтяных и газовых месторождений
Сбор и подготовка нефти, газа и воды
Чертеж сепаратора со спецификацией
Газосепаратор
ГС 2 – 1,6 – 1600
ОСТ 29 – 02 – 2059 – 79
Состав: Вид общий (ВО), Спецификация Язык документа
Софт: КОМПАС-3D 11-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
460 руб.
Сепаратор нефтегазовый НГС 1,6-1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 7 июня 2016
Сепаратор нефтегазовый НГС 1,6-1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
500 руб.
Электропривод электродиафрагменного насоса ЭДН5 – 4 – 1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 20 сентября 2018
Электропривод электродиафрагменного насоса ЭДН5 – 4 – 1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
290 руб.
Редуктор электродиафрагменного насоса ЭДН5 – 4 – 1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 20 сентября 2018
Редуктор электродиафрагменного насоса ЭДН5 – 4 – 1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
290 руб.
Монтажная схема сепаратора ГС2-1,6-1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 4 июня 2016
Монтажная схема сепаратора ГС2-1,6-1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
297 руб.
Станок качалка СК 4-2,1-1600 Балансир-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
lenya.nakonechnyy.92@mail.ru
: 11 мая 2023
Станок качалка СК 4-2,1-1600 Балансир-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
261 руб.
Привод эксцентриковый электродиафрагменного насоса ЭДН5 – 4 – 1600-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 20 сентября 2018
Привод эксцентриковый электродиафрагменного насоса ЭДН5 – 4 – 1600-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
245 руб.
Другие работы
Съемник для тормозных барабанов.
vjycnh
: 4 октября 2015
Конструкторская часть к диплому. 6 чертежей в компасе.
Вид общий, деталировка и пояснительная записка на 6 страницах.
Съёмник трёх лаповый применяется для съёма тормозных барабанов легковых автомобилей и прицепов к ним без нанесения ударов с помощь ручного инструмента (молотка, кувалды). Исключает повреждение, деформацию чугунных тормозных дисков при их демонтаже.
30 руб.
Понятие стратегического планирования
Lokard
: 28 марта 2014
ВВЕДЕНИЕ……………………………………………………………….3
Прогнозирование и планирование………………………………..4-11
План и планирование……………………………………………4
Миссия организации……………………………………………..4
Цели организации………………………………………………..4-6
Прогнозирование…………………………………………………6
Задачи прогнозирования………………………………………..6-7
Прогнозы в социально-экономической сфере………………7-8
Стадии стратегического планирования………………………8
Три класса методов прогнозирования………………………..8-11
Стратегическое планирование как наука………………………11-13
Стратегическое планиро
15 руб.
Создание проекта в MS Project - Лабораторная работа №1 по дисциплине: Управление проектами. Вариант 5
Roma967
: 25 марта 2024
Работа состоит из отчета (docx) и файла с расширением *.mpp.
Nвар = (XX mod 10) + 1 = (14 mod 10) + 1 = 4 + 1 = 5 вариант
Лабораторная работа №1
Тема: Создание проекта в MS Project
Цель: освоение способов описания структуры и содержания проекта, изучение инструментальных средств MS Project для создания проектов выполнения работ, их табличного и графического представления.
Вариант 5
Задача Следующие задачи Предыдущие задачи Продолжительность, (дни) Потребность в трудовых ресурсах, (чел.)
1 A
500 руб.
Пневмокомпенсатор ПК-70-250 бурового насоса Сборочный чертеж-Деталировка: Диафрагма, Корпус, фланец-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
nakonechnyy_lelya@mail.ru
: 26 февраля 2018
Пневмокомпенсатор ПК-70-250 Сборочный чертеж-Деталировка: Диафрагма, Корпус, фланец-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
460 руб.