Экзамен. Билет-15.Теория сложности вычислительных процессов и структур

Состав работы

material.view.file_icon
material.view.file_icon Экзамен. Билет-15.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.

2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]

Дополнительная информация

Сибирский государственный университет телекоммуникаций и информатики
Год: 2018г
Оценка: Отлично
Проверяющий: Галкина М.Ю.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
User Lele911 : 22 мая 2022
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
User DArt : 12 апреля 2022
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6.
Билет №6 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превыша
User LowCost : 1 февраля 2022
249 руб.
promo
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
Задание экзамена на скриншоте. Билет №15 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User 321 : 22 октября 2019
200 руб.
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен. promo
Теория сложности вычислительных процессов и структур. Экзамен. Билет №10.
Оптимальным образом расставить скобки при перемножении следующих матриц:M_1 [4×6],M_2 [6×5],M_3 [5×3],M_4 [3×8],M_5 [8×3]. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&0&6&7&6&0@0&0&1&4&6&2@6&1&0&0&7&4@7&4&0&0&4&3@6&6&7&4&0&7@0&2&4&3&7&0))
User sibguter : 13 сентября 2019
119 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User nik200511 : 27 мая 2019
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Проект эксплуатации ШСНУ со штанговращателем
Введение 1 Обзор и анализ стратегий организации технического обслуживания и ремонта нефтегазопромысловаого оборудования 1.1 Организация технического обслуживания и ремонта нефтепромыслового оборудования по наработке 1.2 Организация технического обслуживания и ремонта оборудования по его фактическому состоянию 2 Обоснование и выбор стратегии организации технического обслуживания и ремонта нефтегазопромыслового оборудования 3 Диагностика и ремонт нефтегазопромыслового оборудования 4 Монтаж нефтега
User DocentMark : 13 ноября 2016
10 руб.
Проект эксплуатации ШСНУ со штанговращателем
Муфта быстросъемная - МЧ00.48.00.00 СБ
С.К. Боголюбов. Чтение и деталирование сборочных чертежей. Альбом. 1986 г. Задание 48. Муфта быстросъемная. Деталирование. Сборочный чертеж. Модели. Быстросъемная муфта предназначена для соединения и разъединения труб гидравлических систем. Она состоит из двух полумуфт. Полумуфта поз. 3 соединяется со станочным приспособлением через переходной штуцер поз. 4. Полумуфта поз. 2 присоединяется к гидропроводу через переходной штуцер поз. 5. Полумуфта поз. 3 имеет трапецеидальную проточку на наружном
User .Инженер. : 28 июля 2022
170 руб.
Муфта быстросъемная - МЧ00.48.00.00 СБ promo
Экзаменационная работа.Физика.БИЛЕТ №7.1-й семестр.
1.Определить скорость V и полное ускорение а точки в момент времени если она движется по окружности радиусом согласно уравнению где – криволинейная координата, отсчитанная вдоль окружности от некоторой точки, принятой за начальную. 2.Тело вращалось с угловой скоростью , когда на него начал действовать тормозящий момент силы . Через тело остановилось. Определить момент инерции тела. 3.Три тела массами связаны попарно друг с другом и подвешены к потолку (см. рисунок). Определить си
User 58197 : 31 января 2012
40 руб.
Лабораторная работа № 3 БЕЗТИПОВЫЕ ПОДПРОГРАММЫ – ФУНКЦИИ. Информатика часть 2 вариант 2 2019 г
Лабораторная работа № 3 БЕЗТИПОВЫЕ ПОДПРОГРАММЫ – ФУНКЦИИ Задание к лабораторной работе: Разработать безтиповую функцию для выполнения над матрицей размером 5х5 операций в соответствии с вариантом. В функции main исходную матрицу сформировать, используя датчик псевдослучайных чисел rand(). На печать вывести исходную и после работы функции преобразованную матрицы. Вариант задания: замена отрицательных элементов матрицы нулями.
User kombatowoz : 21 января 2019
200 руб.
up Наверх