Теория сложности вычислительных процессов и структур Билет 5
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.03.2023
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.03.2023
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Дополнительная информация
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.03.2023
Вид работы: Экзамен
Оценка: Отлично
Дата оценки: 03.03.2023
Похожие материалы
Теория сложности вычислительных процессов и структур. Билет №5
IT-STUDHELP
: 5 июля 2020
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
350 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №5
Roma967
: 25 сентября 2015
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 4 7 1
2 0 5 9 6
4 5 0 8 3
7 9 8 0 1
1 6 3 1 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
nik200511
: 18 декабря 2018
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
21 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
wchg
: 15 октября 2013
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
79 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. 4-й семестр. 5 билет
karapulka
: 22 января 2017
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
02471
20596
45083
79801
16310
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
35 руб.
Экзамен по дисциплине "Теория сложностей вычислительных процессов и структур ". 5-й семестр. Билет № 12
mastar
: 18 декабря 2012
Билет №12
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования
125 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 1-5. Контрольная работа. Вариант 10. Экзаменационная работа. Билет 4.
Bodibilder
: 29 мая 2019
Лабораторная работа №1
Сортировка массивов
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Вариант 0
Метод прямого выбора.
Массив для сортировки:
618, 528, 929, 744, 931, 977, 724, 154, 547, 866, 42, 310, 134, 682, 847, 411, 311, 429, 367, 425, 367, 425, 836, 201, 426, 954, 849, 144, 663, 495, 133, 393, 668
148 руб.
Другие работы
Курсовая работа, Сетевые базы данных, Вариант №7
ivanPBT22
: 7 июля 2016
Занести в таблицу данные о Кинофильмах и Номинациях. В каждой номинации выставляются несколько фильмов. Номинация имеет название и призовой фонд. Фильм имеет название, киностудию и бюджет фильма.
Процедура должна изменять (на одну и ту же величину) призовой фонд номинаций, кроме номинации с минимальным числом заявленных фильмов; величина изменения фондов должна передаваться в процедуру как параметр.
Триггер должен разрешать изменения только владельцу таблицы.
Включить в пакет еще одну процеду
300 руб.
Процесс исполнения расходов федерального бюджета
Elfa254
: 12 ноября 2013
Содержание
Введение
1. Сущность и принципы исполнения федерального бюджета
2. Особенности исполнения расходов федерального бюджета. Органы, осуществляющие исполнения федерального бюджета по расходам
3. Совершенствование исполнения расходов федерального бюджета
Заключение
Список использованной литературы
Введение
В финансовой системе любой страны ведущее место занимает бюджет, который характеризует денежные отношения, складывающиеся у органов государственной власти и местного самоуправлен
10 руб.
Государственные и муниципальные финансы. Экзамен. Билет 3
ilsy
: 31 октября 2017
Билет №3
Вопрос (дайте письменный развернутый ответ)
Поясните необходимость проведения государственного и муниципального финансового контроля.
Задача
Рассчитайте плановые показатели поступления налога на прибыль предприятий и организаций в бюджет субъекта РФ на основании информации финансового органа по данным таблицы. Индекс-дефлятор принять равным за 1,062.
Фактическое поступление в бюджет налога на прибыль организаций за 9 месяцев текущего года 4356,2
Недоимка по налогу на прибыль органи
100 руб.
Типы предприятий
Axell111
: 28 января 2011
Предприятие – основное звено национальной экономики, самостоятельный хозяйствующий уставный субъект, обладающий правами юридического лица и осуществляющий производственную, научно-исследовательскую и коммерческую деятельность с целью получения соответствующей прибыли (доходов). Предприятие как самостоятельно действующий субъект должно иметь самостоятельный баланс или смету, свое наименование, содержащее указание на его организационно-правовую форму. Предприятие как юридическое лицо в соответстви