Теория сложности вычислительных процессов и структур. Экзамен. Билет №6.

Состав работы

material.view.file_icon
material.view.file_icon 06var.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i  mi  сi  M
1  7  21  23
2  3  8 
3  8  18

Дополнительная информация

Вид работы: экзамен
Оценка: отлично
Рецензия: Уважаемая ,
Галкина Марина Юрьевна
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
User Lele911 : 22 мая 2022
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Теория сложностей вычислительных процессов и структур. Билет №6
Билет No6 По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&6&2&7&2&2@6&0&0&1&2&5@2&0&0&4&0&7@7&1&4&0&1&7@2&2&0&1&0&0@2&5&7&7&0&0)) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор
User IT-STUDHELP : 19 ноября 2021
380 руб.
promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзаменационный билет № 6 Теория сложности вычислительных процессов и структур
Билет №6 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 3 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сфор
User AlexBrookman : 29 января 2019
330 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 6
Билет №6 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 2 7 2 2) (6 0 0 1 2 5) (2 0 0 4 0 7) (7 1 4 0 1 7) (2 2 0 1 0 0) (2 5 7 7 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического
User SibGOODy : 21 августа 2024
350 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Совершенствование стенда для диагностики и регулировки форсунок.
Содержание 6 Введение 10 1. Характеристика предприятия 1.1 Общая характеристика предприятия 12 1.2 Структура управления 15 1.3 Территориальная расположенность 18 1.4 Обоснование темы проекта 23 2. Проектная часть 24 2.1 Обоснование исходных данных для проектирования 24 2.2 Спиcочный парк техники по маркам 25 2.3 Расчет годовой производственной программы ТО и ТР по количеству воздействий 26 2.3.1 Ресурс по каждой марке подвижного состава 26 2.3.2 Определение числа ТО и ТР на группу (парк) автомо
300 руб.
Совершенствование стенда для диагностики и регулировки форсунок.
Ларі Даймонд: три парадокси демократії
Вступ 1. Згода versus ефективність 2. Представничість versus керованість 3. Конфлікт versus консенсус 4. Етнічні й партійні поділи Вступ Світ 1990 року переживає демократичну революцію. У всьому світі,що розвивається, люди протестують і повстають проти комуністичного і авторитарного правління. Цей неспокій поширився на найізольованіші, найнеймовірніші забуті закутки світу. Ще ніколи в історії не було стількох незалежних держав, які б або вимагали запровадити, або запроваджували, або здійснювали
User Qiwir : 12 января 2014
5 руб.
Электромагнитные поля и волны. Экзамен. Билет № 07
Билет № 07 Излучение электромагнитных волн. Электродинамические потенциалы. Элементарный электрический излучатель. Поля излучателя в ближней и дальней зонах. Задача 1 Плоская электромагнитная волна распространяется в однородной немагнитной среде с относительной диэлектрической проницаемостью = 4 и удельной проводимостью . Частота электромагнитной волны f = 5,5 МГц. Определить: 1.Фазовую постоянную. 2.Длину волны в среде.
User Gila : 17 января 2019
215 руб.
Гидроцилиндр тормозной - 03.000 СБ
Аксарин П. Е. Чертежи для деталирования. Задание 3. Ги Гидроцилиндр тормозной. При нажатии на тормозную педаль тормозная жидкость через штуцер 4 поступает из главного тормозного цилиндра в рабочий. Поступая под давлением в.полость рабочего тормозного цилиндра, жидкость толкает поршни 7, которые разжимают тормозные колодки I. При прекращении нажатия тормозные колодки под действием пружины II сходятся и тем самым возвращают поршни 7 в первоначальное положение. При этом жидкость выталкивается обра
User .Инженер. : 31 марта 2020
170 руб.
Гидроцилиндр тормозной - 03.000 СБ promo
up Наверх