Алгебра и геометрия. 6 вариант
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
4. Даны координаты вершин треугольника
5. Даны координаты вершин пирамиды
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
4. Даны координаты вершин треугольника
5. Даны координаты вершин пирамиды
Дополнительная информация
2016 год
Похожие материалы
Алгебра и геометрия. Вариант №6
mortalweb2
: 16 октября 2021
Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису.
Операции над векторами, Сложение векторов, Модуль суммы векторов и т.д.
100 руб.
СИБГУТИ Алгебра и геометрия 1семестр 6 вариант
salut135
: 11 декабря 2010
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
50 руб.
Алгебра и геометрия. Экзамен. Вариант №6
step72
: 18 мая 2013
БИЛЕТ № 6
1. Произведение матриц, его свойства.
2. Взаимное положение двух прямых на плоскости.
3. Найти длину высоты, опущенной из вершины О в тетраэдре ОАВС, если
О (-5;-4;8), А (2;3;1), В (4;1;-2), С (6;3;7).
4. Найти , где А(2;-1;2), В(1;2;-1) и С(3;2;1).
5. Привести к каноническому виду и построить кривую .
40 руб.
Зачет по Алгебра и геометрия, 1 семестр, 6 вариант
Andreas74
: 24 июля 2018
Билет № 6
1. Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(5;2;0), B(5;4;0), C(7;-2;-1), D(4;3;1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго поряд
50 руб.
Алгебра и геометрия
blur
: 6 февраля 2023
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин п
50 руб.
«Алгебра и геометрия»
LenaSibsutis
: 4 февраля 2022
СибГУТИ. Дистанционное обучение
Контрольная работа на темы: матрицы, метод Крамера, метод Гаусса, составление уравнений по координатам вершин фигур
Контрольная из 5 заданий:
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравне
250 руб.
Алгебра и геометрия
s0nnk
: 28 января 2022
Контрольная работа №1
Вариант 1
По дисциплине «Алгебра и геометрия»
СибГУТИ 1 семестр
Работа выполнена на ОТЛИЧНО
ЗАДАНИЯ (скриншот задания прикрепила):
1.Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение
50 руб.
Алгебра и геометрия
gradus15
: 9 августа 2017
1. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
3. Даны векторы {-2,-3,-1} {3,-1,2} {-4,2,-3}
4. Даны координаты вершин треугольника
700 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.