Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.

Состав работы

material.view.file_icon 2E6F665B-6DA0-400C-8F00-413C1E7305D2.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.

2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]

Дополнительная информация

май 2018, зачтено
Теория сложности вычислительных процессов и структур Билет 5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720 Комментарии: Уважаемый студент, дистанционного обучения,
User maksim3843 : 6 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Билет №5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720
User IT-STUDHELP : 5 июля 2020
350 руб.
Теория сложности вычислительных процессов и структур. Билет №5 promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
Билет №5 (Все задачи решаются «вручную») 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User wchg : 15 октября 2013
79 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Билет 7 С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). а b c d E f 0 0 4 0 0 5 3 1 4 0 7 2 4 4 2 0 7 0 6 1 5 3 0 2 6 0 4 7 4 5 4 1 4 0 3 5 3 4 5 7 3 0
User Светлана59 : 31 марта 2023
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
User Lele911 : 22 мая 2022
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Гидромеханика ГУМРФ им. адм. С. О. Макарова 2017 Задача 1.3 Вариант 10
Определите указанную величину объемного расхода жидкости в системе СИ. Подробно покажите порядок вычислений.
User Z24 : 27 октября 2025
120 руб.
Гидромеханика ГУМРФ им. адм. С. О. Макарова 2017 Задача 1.3 Вариант 10
Контрольная работа по дисциплине: Звуковое вещание. Вариант №11
Задание на контрольную работу Контрольная работа содержит по три вопроса. Номера задач и вопросов выбирают из таблице 1. Студент выбирает номера вопросов по последним цифрам пароля. Таблица 1 – Вопросы согласно варианту Вариант: 11 Вопросы: 12, 39, 70 12. Какой смысл вкладывается в понятие совместимость? Поясните это на ряде конкретных примеров. 39. Перечислите оборудование аппаратных звукового вещания: студийных, звукозаписи, монтажа, центральной, коммутационно-распределительной, трансляцио
User Учеба "Под ключ" : 5 декабря 2020
400 руб.
promo
Контрольная работа по дисциплине: Материалы и компоненты электронной техники
Описание: Материалы электронных средств. Контрольная работа. Ответы Задача No 3.1.1 Пленочный резистор состоит из трех участков, имеющих различные сопротивления квадрата пленки R1=10 Ом; R2=20 Ом; R3=30 Ом. Определить сопротивление резистора. Задача No 3.1.2 Вычислить падение напряжения на полностью включенном реостате, изготовленном из константановой проволоки длиной 10 м, при плотности тока 5 А/мм2. Удельное сопротивление константана принять равным 0,5 мкОм·м. Задача No 3.1.3 Сопротившление
User hellofromalexey : 4 марта 2020
18 руб.
Агрегат ремонтно-буровой АРБ100 (буровое исполнение). Циркуляционная система ЦС-4С. Агрегат насосный АН 320 25. Ловитель съемного керноприемника снаряда КССК-95 (при захвате). Колонковый снаряд КССК-95. Патентно-информационный обзор. Алмазная коронка-Обор
Лист 1. ГТН Асанской скважины. Дипломный проект привязан к Асанской параметрической скважине №262, который находится в Дзержинском районе Красноярского края. Лист 2. АРБ-100 (буровое исполнение) По нашему мнению, целесообразно поменять буровую установку БУ 2500/160 ДГУ, предложенную в проекте Асанской параметрической скважины, на агрегат ремонтно-буровой АРБ-100 при строительстве скважины. Агрегат состоит из следующих основных блоков: подъемный блок основан на полноприводном шасси высокой пр
1392 руб.
Агрегат ремонтно-буровой АРБ100 (буровое исполнение). Циркуляционная система ЦС-4С. Агрегат насосный АН 320 25. Ловитель съемного керноприемника снаряда КССК-95 (при захвате). Колонковый снаряд КССК-95. Патентно-информационный обзор. Алмазная коронка-Обор
up Наверх