Теория сложностей вычислительных процессов и структур. Экзамен. Билет 5.
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
Дополнительная информация
май 2018, зачтено
Похожие материалы
Теория сложности вычислительных процессов и структур Билет 5
maksim3843
: 6 марта 2023
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
Комментарии: Уважаемый студент, дистанционного обучения,
300 руб.
Теория сложности вычислительных процессов и структур. Билет №5
IT-STUDHELP
: 5 июля 2020
Билет No5
1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5].
2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
040764
401327
010541
735037
624302
471720
350 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур. Экзаменационная работа. Билет №5
wchg
: 15 октября 2013
Билет №5
(Все задачи решаются «вручную»)
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. В скриншоте.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
79 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Другие работы
Гидромеханика ГУМРФ им. адм. С. О. Макарова 2017 Задача 1.3 Вариант 10
Z24
: 27 октября 2025
Определите указанную величину объемного расхода жидкости в системе СИ. Подробно покажите порядок вычислений.
120 руб.
Контрольная работа по дисциплине: Звуковое вещание. Вариант №11
Учеба "Под ключ"
: 5 декабря 2020
Задание на контрольную работу
Контрольная работа содержит по три вопроса. Номера задач и вопросов выбирают из таблице 1. Студент выбирает номера вопросов по последним цифрам пароля.
Таблица 1 – Вопросы согласно варианту
Вариант: 11
Вопросы: 12, 39, 70
12. Какой смысл вкладывается в понятие совместимость? Поясните это на ряде конкретных примеров.
39. Перечислите оборудование аппаратных звукового вещания: студийных, звукозаписи, монтажа, центральной, коммутационно-распределительной, трансляцио
400 руб.
Контрольная работа по дисциплине: Материалы и компоненты электронной техники
hellofromalexey
: 4 марта 2020
Описание:
Материалы электронных средств. Контрольная работа. Ответы
Задача No 3.1.1
Пленочный резистор состоит из трех участков, имеющих различные сопротивления квадрата пленки R1=10 Ом; R2=20 Ом; R3=30 Ом. Определить сопротивление резистора.
Задача No 3.1.2
Вычислить падение напряжения на полностью включенном реостате, изготовленном из константановой проволоки длиной 10 м, при плотности тока 5 А/мм2. Удельное сопротивление константана принять равным 0,5 мкОм·м.
Задача No 3.1.3
Сопротившление
18 руб.
Агрегат ремонтно-буровой АРБ100 (буровое исполнение). Циркуляционная система ЦС-4С. Агрегат насосный АН 320 25. Ловитель съемного керноприемника снаряда КССК-95 (при захвате). Колонковый снаряд КССК-95. Патентно-информационный обзор. Алмазная коронка-Обор
https://vk.com/aleksey.nakonechnyy27
: 14 марта 2016
Лист 1. ГТН Асанской скважины.
Дипломный проект привязан к Асанской параметрической скважине №262, который находится в Дзержинском районе Красноярского края.
Лист 2. АРБ-100 (буровое исполнение)
По нашему мнению, целесообразно поменять буровую установку БУ 2500/160 ДГУ, предложенную в проекте Асанской параметрической скважины, на агрегат ремонтно-буровой АРБ-100 при строительстве скважины. Агрегат состоит из следующих основных блоков: подъемный блок основан на полноприводном шасси высокой пр
1392 руб.