Теория вероятностей и математическая статистика. Экзамен. Билет № 4

Состав работы

material.view.file_icon
material.view.file_icon ЭкзаменТВиМС.ЖильцовА.В.бил4.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Локальная и интегральная теоремы Лапласа. Формула Пуассона.
2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара?
3. Дискретная случайная величина имеет следующий ряд распределения

Дополнительная информация

Оценка хорошо
Теория вероятностей и математическая статистика. Экзамен. Билет №4
Билет No 4 1. Тема: Общее определение вероятности. Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В. 2. Тема: Дискретные двумерные случайные величины. Задача: Двумерная с.в. распределена по следующему закону: 0 1 –1 0,1 0,15 0 0,15 0,25 1 0,2 0,15 Найти cov(, ).
User Damovoy : 4 февраля 2021
61 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4
Теория вероятностей и математическая статистика. Экзамен. Билет №4
Билет No 4 1. Тема: Общее определение вероятности. Задача: В ящике 5 белых и 3 чёрных шара. Случайным образом достают 2 шара. События: А–шары белые, В – шары одного цвета. Найти вероятность А+ В. 2. Тема: Дискретные двумерные случайные величины. Задача: Двумерная с.в. распределена по следующему закону: 0 1 –1 0,1 0,15 0 0,15 0,25 1 0,2 0,15 Найти cov(, ).
User growlist : 11 апреля 2017
90 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4 promo
Теория вероятностей и математическая статистика. Экзамен. Билет №4.
Билет № 4 1. Локальная и интегральная теоремы Лапласа. Формула Пуассона. ЛОКАЛЬНАЯ ТЕОРЕМА ЛАПЛАСА 2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара? 3. Дискретная случайная величина имеет следующий ряд распределения Х -10 -5 0 5 10 р а 0,32 2a 0,41 0,03 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непрерывная случайная величина имеет плотность ра
User volodaiy : 18 июня 2016
150 руб.
Теория вероятностей и математическая статистика. Экзамен. Билет №4.
Экзамен по дисциплине: Теория вероятностей и математическая статистика Билет №4
1. Теоремы сложения и умножения вероятностей. Условная вероятность. 2. На предприятии 3 телефона, вероятности занятости которых 0,6; 0,4; 0,5 соответственно. Какова вероятность, что хотя бы один свободен? 3. Найти ряд распределения и среднее значение числа выпадений «герба» при 3-х бросаниях монеты. 4. Плотность распределения случайного вектора имеет вид 5.Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шес
User tindrum : 14 ноября 2011
50 руб.
Теория вероятностей и математическая статистика. Билет №4
1. Локальная и интегральная теоремы Лапласа. Формула Пуассона 2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара? Пронумеруем все шары. Всего шаров 12. Исходом считаем выбор 5 любых шаров. 3. Дискретная случайная величина имеет следующий ряд распределения Х -10 -5 0 5 10 р а 0,32 2a 0,41 0,03 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины. 4. Непр
User ANNA : 18 февраля 2019
65 руб.
Теория вероятностей и математическая статистика. Билет №4
Билет №4. Теория вероятностей и математическая статистика
Билет № 4 Задача 1. Локальная и интегральная теоремы Лапласа. Формула Пуассона Задача 2. Из урны, где находятся 4 белых и 8 черных шаров, случайно вытащены 5 шаров. Какова вероятность того, что среди них будет 2 белых шара? Задача 3. Дискретная случайная величина имеет следующий ряд распределения Х -10 -5 0 5 10 р а 0,32 2a 0,41 0,03 Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
User elina56 : 19 сентября 2015
60 руб.
Экзамен по дисциплине: "Теория вероятности и математическая статистика". Билет №4. ДО СИБГУТИ
Смотреть фотографии. Вопрос 1. Если событие А исключает событие Б, то они … Вопрос 2. Пусть вероятность события равна тогда вероятность противоположного события равна… Вопрос 3. Вычислить значение Вопрос 4. Карточки, на которых написано слово ШАШКА перемешали и разложили в произвольном порядке. Какова вероятность, что снова получилось слово ШАШКА? Вопрос 5. Формула Вопрос 6. Для вычисления вероятности наступления события в схеме Бернулли при большом количестве испытаний используетс
User Ivannsk97 : 21 января 2021
300 руб.
Экзамен по дисциплине: "Теория вероятности и математическая статистика". Билет №4. ДО СИБГУТИ
Теория вероятностей и математическая статистика (часть 2) Билет №4 Экзамен
Билет №4. Теоретический вопрос. Предельные теоремы в схеме Бернулли. Практическое задание Оцените распределение случайной величины по выборке: Xi 5.762 1.957 -0.724 -2.150 1.823 3.261 0.218 1.001 8.150 -0.097 1)выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению 2)оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода 3)проверьте выдвинутую гипотезу о распределении с.в. любым известным методом, про
User АнастасияАМ : 15 мая 2019
600 руб.
Сопряжения Задание 6 вариант 5
Сопряжения Задание 6 вариант 5 Вычертить изображения контуров деталей и нанести размеры. Чертеж выполнен на формате А3 в AutoCAD 2013 возможно открыть с 2013 по 2022 версиях и выше версиях. Также открывать и просматривать чертежи и 3D-модели, выполненные в AutoCAD-е можно просмоторщиком DWG TrueView 2021. Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
User lepris : 20 мая 2022
120 руб.
Сопряжения Задание 6 вариант 5
Основы термодинамики и теплотехники СахГУ Задача 1 Вариант 14
По известному массовому составу продуктов сгорания и их параметрам – давлению р1 и температуре t1 определите: 1. Среднюю молекулярную массу и газовую постоянную смеси. 2. Плотность и удельный объем при заданных и нормальных условиях. 3. Парциальное давление СО2.
User Z24 : 27 января 2026
200 руб.
Основы термодинамики и теплотехники СахГУ Задача 1 Вариант 14
Бруй Л.П. Техническая термодинамика ТОГУ Задача 5 Вариант 85
Определение технико-экономических показателей теоретического цикла Ренкина Паротурбинная установка работает по теоретическому циклу Ренкина. Давление и температура водяного пара на выходе из парогенератора (перед турбиной): p1 и t1; давление пара после турбины (в конденсаторе) p2. Определить термический коэффициент полезного действия цикла ηt и теоретический удельный расход пара d, кг/(кВт·ч) при следующих условиях работы установки: I — p1, t1 и p2 — (все параметры взять из табл. 6);
User Z24 : 13 января 2026
250 руб.
Бруй Л.П. Техническая термодинамика ТОГУ Задача 5 Вариант 85
Расчетно-графическое задание N5
Расчет статически неопределимой балоки методом сил
User Администратор : 18 апреля 2006
Расчетно-графическое задание N5
up Наверх