Дискретная математика. Лабораторные работы №1-5

Цена:
50 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon LAB2.exe
material.view.file_icon Lab_2.exe
material.view.file_icon Lab_5.exe
material.view.file_icon Lab_5.pas
material.view.file_icon Лабораторная работа №5.doc
material.view.file_icon
material.view.file_icon Lab_1.exe
material.view.file_icon Lab_1.pas
material.view.file_icon Lab_2.exe
material.view.file_icon Лабораторная работа №1.doc
material.view.file_icon
material.view.file_icon Lab_2.exe
material.view.file_icon Lab_2.pas
material.view.file_icon Лабораторная работа №2(испр).doc
material.view.file_icon Лабораторная работа№2(замеч).doc
material.view.file_icon
material.view.file_icon Lab_3.exe
material.view.file_icon Lab_3.pas
material.view.file_icon Лабораторная работа №3.doc
material.view.file_icon
material.view.file_icon Lab_4.exe
material.view.file_icon Lab_4.PAS
material.view.file_icon Лабораторная работа №4.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AÍ B, AÈ B, AÇ B, A\B (дополнительно: B\A, AD B, BÍ A).
Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновременно с результатом на экране должны присутствовать и исходные множества.
Возврат на п.2 (выбор операции).
Завершение работы программы – из п.2 (например, по ESC).
Дополнительно: предусмотреть возможность возврата не только к выбору операции (п.2), но и к вводу новых множеств (п.1). Выход в таком случае должен быть возможен из любого пункта (1 или 2).
Замечание: Исходные множества не должны содержать повторяющихся элементов (при обработке входных данных такие элементы следует удалять). Если исходные множества не упорядочены, нужно отсортировать их по возрастанию. Только после такой обработки над множествами возможно выполнять требуемые операции.

Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и парывводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера n ́ n; 
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).

Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
á 3 5 2 6 4 1ñ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: á 3 5 4 6 2 1ñ (это промежуточный набор).
После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор Þ выдать его на печать.
á 3 5 4 1 2 6ñ.
Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию Þ целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было á 3 5 4 1 2 6ñ Þ выдать á 3 5 4 1 6 2ñ .
Если был набор á 3 5 2 6 1 4ñ Þ выдать á 3 5 2 6 4 1ñ .
Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.

Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение.
Алгоритм построения бинарного кода Грея
Вход: n 3 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество “2” в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет “включаться” бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.

Дополнительно
множества

Дополнительно:
Предоставить пользователю возможность задать исходное множество путем перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.

Лабораторная работа No 5 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No2.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.

Дополнительная информация

Все работы зачтены. По некоторым работам были замечания, но они успешно исправлены(файлы с замечаниями и исправлениями приложены). Учитывая что работы принимает Бах О.А., это немаловажный фактор
Дискретная математика. Лабораторная работа № 1
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
User svladislav987 : 16 апреля 2021
200 руб.
Дискретная математика. Лабораторная работа №1
Лабораторная работа No 1 Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). После ввода множес
User Bodibilder : 14 марта 2019
15 руб.
Дискретная математика. Лабораторная работа №1
Тема: Множества и операции над ними Задание Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается т
User sibguter : 5 июня 2018
49 руб.
Лабораторная работа № 1. Дискретная математика
Лабораторная работа No 1 Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств
User Antipenko2016 : 8 января 2017
150 руб.
Лабораторная работа №1 по дискретной математике
Работа No 1.Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается тре
User puzirki : 25 декабря 2013
200 руб.
Дискретная математика. Лабораторная работа №1
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
User PShulepov : 13 октября 2013
100 руб.
Дискретная математика. Лабораторная работа №1
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается требуемая операция (посредством текстового ме
User GTV8 : 10 сентября 2012
250 руб.
Лабораторная работа №1 по дискретной математике
Множества и операции над ними Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом: 1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита). 2. После ввода множеств выбирается требуемая опер
User migsvet : 7 апреля 2012
100 руб.
Курсовая работа по дисциплине "Численные методы при решении дифференциальных уравнений"
Задание стр. 3 1. Постановка комплекса задач стр. 4 2. Теоретический раздел стр. 5 3. Проектный раздел стр. 7 3.1. Блок-схема функционирования программы стр. 7 3.2. Задание начальных условий стр. 7 3.3. Описание алгоритма метода Рунге-Кутта стр. 8 3.4. Описание алгоритма линейной интерполяции стр. 9 4. Исходный модуль программы стр. 11 5. Результаты тестирования и выполнения задания стр. 14 6. Список литературы стр. 16 Задание Напряжение в электрической цепи описывается дифференциаль
User terraST : 30 апреля 2012
20 руб.
Экзаменационная работа «Основы оптической связи (часть2)» Билет №6
Билет № 6 1. Определить дисперсию и длительность импульса на входе приемного оптического модуля, если работа ВОСП производится на длине волны 1.55мкм на участке 75км по волокну SF, ширина спектральной линии источника излучения на уровне 0,01 равна 2 нм, по ВОСП передается сигнал 1,25 Гбит/с. 2. Объясните, какими методами достигается одномодовый режим генерации в лазерах DFB, DBR, VCSEL(ЛВР). 3. Объясните, каким образом получают требуемую величину полосы пропускания в ФПУ с ИУ и в ФПУ с ТИУ.
User Hermes : 15 июня 2023
500 руб.
Ассортимент и приготовление бутербродов
Введение 4 1. Ассортимент выпускаемой продукции. Классификация блюд 5 2. Товароведческая характеристика сырья и продуктов, используемых для приготовления блюд 8 3. Механическая кулинарная обработка сырья и приготовление полуфабрикатов. 12 4. Особенности приготовления блюд по разрабатываемой теме, их оформление и способы подачи 13 5. Составление технологических карт 15 От поколения в поколение передавались опыты приготовления бутербродов. Хранились все традиции, связанные с едой. Понималась, чт
User Рики-Тики-Та : 12 сентября 2011
55 руб.
Термодинамика и теплопередача ТЕПЛОПЕРЕДАЧА ИрГУПС 2015 Задача 2 Вариант 0
По данным тепловых измерений тепломером средний удельный тепловой поток через ограждение изотермического вагона при температуре наружного воздуха tн и температуре воздуха в вагоне tв составил q. На сколько процентов изменится количество тепла, поступающего в вагон за счет теплоотдачи через ограждение, если при прочих равных условиях на его поверхность наложить дополнительный слой изоляции из пиатерма толщиной δ=30 мм с коэффициентом теплопроводности λ=0,036 Вт/(м·К)?
User Z24 : 3 декабря 2025
150 руб.
Термодинамика и теплопередача ТЕПЛОПЕРЕДАЧА ИрГУПС 2015 Задача 2 Вариант 0
up Наверх