Дискретная математика. Лабораторная работа №3
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
á 3 5 2 6 4 1ñ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: á 3 5 4 6 2 1ñ (это промежуточный набор).
После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор Þ выдать его на печать.
á 3 5 4 1 2 6ñ.
Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию Þ целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было á 3 5 4 1 2 6ñ Þ выдать á 3 5 4 1 6 2ñ .
Если был набор á 3 5 2 6 1 4ñ Þ выдать á 3 5 2 6 4 1ñ .
Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
á 3 5 2 6 4 1ñ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: á 3 5 4 6 2 1ñ (это промежуточный набор).
После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор Þ выдать его на печать.
á 3 5 4 1 2 6ñ.
Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию Þ целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было á 3 5 4 1 2 6ñ Þ выдать á 3 5 4 1 6 2ñ .
Если был набор á 3 5 2 6 1 4ñ Þ выдать á 3 5 2 6 4 1ñ .
Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 05.06.2016
Рецензия:
Бах Ольга Анатольевна
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 3
Оценка:Зачет
Дата оценки: 05.06.2016
Рецензия:
Бах Ольга Анатольевна
Похожие материалы
Дискретная математика. Лабораторная работа № 3
svladislav987
: 16 апреля 2021
Лабораторная работа № 3 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пред
200 руб.
Дискретная математика. Лабораторная работа №3
sibguter
: 5 июня 2018
Тема: Генерация подмножеств
Задание
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредство
49 руб.
Дискретная математика. Лабораторная работа № 3
alexxxxxxxela
: 5 января 2014
Лабораторная работа № 3
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем
70 руб.
Лабораторная работа №3 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством
300 руб.
Дискретная математика. Лабораторная работа №3
GTV8
: 10 сентября 2012
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК!
250 руб.
Лабораторная работа №3 по дискретной математике
migsvet
: 7 апреля 2012
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО
100 руб.
Лабораторная работа № 3 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
48 руб.
Дискретная математика. Лабораторная работа №3. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
30 руб.
Другие работы
Курсовая работа на тему "Принципы обмена управляющей информацией по протоколу SNMP" 03 вариант
Помощь студентам СибГУТИ ДО
: 26 февраля 2014
Задание:
Расшифровать приведенные в hex’кодах сообщения управляющего протокола, в соответствии с поставленными ниже вопросами.
Определить из приведенных сообщений:
1. Фирму-поставщика оборудования сетевых интерфейсов
2. MAC-адреса источника и назначения
3. Тип протокола, обслуживаемого данным Ethernet-кадром
4. Версию протокола сетевого уровня
5. Приоритет сетевого уровня для данной дейтаграммы
6. Длину пакета сетевого уровня (в байтах)
7. Время жизни данной дейтаграммы
8. Протокол транспортно
350 руб.
Информационные технологии управления.Экзамен.
Aronitue9
: 2 сентября 2012
Экзамен. Информационные технологии управления, Ростов-на-Дону, СКАГС, доц. Вострикова, 2009, 88 стр.
Понятие управленческой информации. Подходы к оценке информации. Свойства управленческой информации. Понятие информационных ресурсов.
Информационные технологии управления с точки зрения системного подхода.
Основные этапы развития информационных технологий в России.
Средства информационных технологий обеспечения управленческой деятельности. Функциональные и обеспечивающие подсистемы ИС.
Основные ко
20 руб.
Зачетная работа по дисциплине: Стандартизация и сертификация. Билет №8
IT-STUDHELP
: 4 февраля 2020
Зачетное задание №8
по дистанционному курсу «Стандартизация и сертификаций»
1. Оценка уровня языков программирования. Сравнение языков программирования.
2. Вид стандарта: понятие, классификация.
Билет №8
1. Укажите правильный вариант положения Федерального закона "О техническом регулировании"
a. добровольное подтверждение соответствие осуществляется в формах принятия декларации о соответствии (далее - декларирование соответствия) и добровольной сертификации;
b. добровольное подтверждение со
500 руб.
Модернизация агрегата комбинированного АКП-3 (конструкторский раздел дипломного проекта)
kreuzberg
: 8 июня 2018
4 МОДЕРНИЗАЦИЯ МАШИНЫ ДЛЯ ПОВЕРХНОСТНОЙ
ОБРАБОТКИ ПОЧВЫ
4.1 Краткая техническая характеристика машины и обоснование
модернизации
Рисунок 4.1- Почвообрабатывающий агрегат АКП-3
1-рама; 2-навесное устройство; 3-ротор; 4-прикатывающий каток; 5-планировочного бруса.
Агрегат АКП-3 рисунок 4.1 за один проход выполняет рыхление, выравнивание и прикатывание почвы с созданием в посевном слое уплотненного семенного ложа, средних и тяжелых по механическому составу минеральных почв.
999 руб.