Дискретная математика. Контрольная работа. Вариант 10
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 10
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) È (AÇ C) = A\(B\C) б) (AÈ B) ́ (CÈ D)=(A ́ C)È (B ́ C)È (A ́ D)È (B ́ D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,1),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í R2, P = {(x,y) | x2 3 y}.
No4 Доказать утверждение методом математической индукции:
1·2 + 2·5 + 3·8 + ... + n·(3·n–1) = n2·(n+1).
No5 Десять студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое в каждой. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 20 или 25? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3·y2·z3, b=x2·y2·z2, c=x6·z4 в разложении (5·x3+3·y+2·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 7·an+1 + 5·an = 0· и начальным условиям a1=6, a2=9.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) È (AÇ C) = A\(B\C) б) (AÈ B) ́ (CÈ D)=(A ́ C)È (B ́ C)È (A ́ D)È (B ́ D).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,3),(a,2),(b,2),(b,3),(c,1),(c,4)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,1),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P Í R2, P = {(x,y) | x2 3 y}.
No4 Доказать утверждение методом математической индукции:
1·2 + 2·5 + 3·8 + ... + n·(3·n–1) = n2·(n+1).
No5 Десять студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы, не менее чем по двое в каждой. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за четырьмя совершенно одинаковыми столиками (не менее чем по одному) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 8, 20 или 25? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3·y2·z3, b=x2·y2·z2, c=x6·z4 в разложении (5·x3+3·y+2·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 2·an+2 + 7·an+1 + 5·an = 0· и начальным условиям a1=6, a2=9.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v6 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.06.2016
Рецензия:Уважаемый
Контрольная работа выполнена с замечаниями, которые были успешно устранены. Работу принимала Бах О.А. Замечания и их исправления размещены в файле
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 26.06.2016
Рецензия:Уважаемый
Контрольная работа выполнена с замечаниями, которые были успешно устранены. Работу принимала Бах О.А. Замечания и их исправления размещены в файле
Похожие материалы
Контрольная работа. Дискретная математика. Вариант №10
Zenkoff
: 9 декабря 2014
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
3. Для булевой функции найти методом пр
60 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №10
SibGOODy
: 20 июля 2018
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U={1,3,5,7,9}, A={1,3,9}, B={5,7,9}, C={4,5}, D={9}.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице ист
500 руб.
Контрольная работа №1. Дискретная математика. Вариант №10
alli_2410
: 16 февраля 2016
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
3. Для булевой функции найти методом пр
40 руб.
Контрольная работа. Вариант №10. Дискретная математика. СибГУТИ
poststud
: 4 июня 2015
Задача 1. Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (AC) = A\(B\C)б) (AB)(CD)=(AC)(BC)(AD)(BD).
Задача 2. Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является л
120 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №10
Akyma
: 27 января 2015
Контрольная работа По дисциплине: Дискретная математика Вариант: 10
1. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если студент не получил все зачёты
150 руб.
Контрольная работа по предмету «Дискретная математика». Вариант № 10
yans
: 10 октября 2012
Контрольная работа по предмету
«Дискретная математика».
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей
350 руб.
" Дискретная математика" Контрольная работа. Вариант 10. СибГУТИ
nat2744
: 2 июня 2009
I. Задано универсальное множество U и множества A, B, C, D.
Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать
100 руб.
Дискретная математика. Вариант №10
Добрыйдень
: 23 февраля 2021
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
50 руб.
Другие работы
Серьга. Вариант 6 ЧЕРТЕЖ
vermux1
: 20 февраля 2024
Серьга. Вариант 6
По двум проекциям построить третью проекцию с применением разрезов. Нанести размеры.
Чертеж выполнен на формате А3 + 3d модель (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С.
150 руб.
Физика. Задача № 2505-4,2
Григорий12
: 21 мая 2014
4. Вычислить, пользуясь формулой Ван-дер-Ваальса, давление углекислого газа массой 1,1 кг, заключенного в баллоне, вместимостью 20 л при температуре 280 К. Сравнить результаты с давлением идеального газа при тех же условиях.
80 руб.
Профессионально-личностный коучинг / Темы 1-5 / Сборник правильных ответов на отлично! / 100 из 100 баллов
Скиталец
: 23 августа 2024
Профессионально-личностный коучинг / Темы 1-5 / Сборник правильных ответов на отлично! / 100 из 100 баллов
Профессионально-личностный коучинг
УЧЕБНЫЕ МАТЕРИАЛЫ
Профессионально-личностный коучинг
Тема 1. Предмет и подходы к изучению личности: личность и профессия
Тема 2. Развитие и социализация личности в профессии
Тема 3. Социальная и профессиональная зрелость
Тема 4. Персональный коучинг: Я-концепция и внутренний мир, структура ценностей Тема. 5. Персональный коучинг: мотивация поведения и
290 руб.
Определение предельных размеров посадки
ЧертежРасчетович
: 12 февраля 2017
Для посадки ∅30 H7/h6 определите предельные размеры, допуски отверстия и вала, предельные зазоры и натяги в соединении, допуск посадки. Постройте в масштабе схему полей допусков с указанием на ней всех рассчитанных величин.
200 руб.