Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №25

Цена:
650 руб.

Состав работы

material.view.file_icon F081F051-CAA1-4BC1-9187-1CB0588A3E8C.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №25

1. Линейные дифференциальные уравнения с постоянными коэффициентами с правой частью и их решение.

2. Найти градиент функции z=f(x,y) в точке M(1;1):
Z=корень(x^(2)+y^(2))-xy

3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже (см. скрин).

4. Найти область сходимости ряда (см. скрин).

5. Разложить в ряд Фурье:
f(x)=
2x+1, (-pi,0) принадлежащее x
2x-1, (0,pi) принадлежащее x

6. Найти общее решение дифференциального уравнения:
(x+xy^(2))dx+(1+x^(2))dy=0

7. Найти частное решение дифференциального уравнения:
y''-4y'+5y=2x*e^(3x), y(0)=0, y'(0)=0

Дополнительная информация

Оценка - отлично!
Дата сдачи: май 2019 г.
Преподаватель: Агульник В.И.
Помогу с другим вариантом.

Выполняю работы на заказ по различным дисциплинам.
E-mail: LRV967@ya.ru
Экзамен. Математический анализ(часть 2-я) билет № 25
1. Линейные дифференциальные уравнения с постоянными коэффициентами с правой частью и их решение. 2. Найти градиент функции в точке . 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. 4. Найти область сходимости ряда 5. Разложить в ряд Фурье 6. Найти общее решение дифференциального уравнения 7. Найти частное решение дифференциального уравнения
User xadmin : 24 октября 2017
85 руб.
Экзамен. Математический анализ(часть 2-я) билет № 25
Экзаменационная работа «Математический анализ» (часть 2-я). БИЛЕТ № 25
Экзаменационная работа «Математический анализ» (часть 2) БИЛЕТ № 25 1. Линейные дифференциальные уравнения с постоянными коэффициентами с правой частью и их решение. 2. Найти градиент функции в точке : 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. 4. Найти область сходимости ряда 5. Разложить в ряд Фурье 6. Найти общее решение дифференциального уравнения 7. Найти частное решение дифференциального уравнения СМОТРИМ СКРИНШОТ ЗАДАНИЯ
User dimon2015 : 19 января 2016
250 руб.
Экзаменационная работа «Математический анализ» (часть 2-я). БИЛЕТ № 25
Экзаменационная работа билет №25. Дисциплина «Математический анализ. Часть 2-я.» Агульник +скриншоты от руки в архиве
Сибирский государственный университет телекоммуникаций и информатики Дистанционное обучение Направление «Телекоммуникации». Ускоренная подготовка Дисциплина «Высшая математика» Экзамен. Часть 2. БИЛЕТ № 25 1. Линейные дифференциальные уравнения с постоянными коэффициентами с правой частью и их решение. 2. Найти градиент функции в точке . 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. 4. Найти область сходимости ряда 5.Разложить в ряд Фурье 6.Найти общее р
User Sunshine : 12 июля 2016
100 руб.
Экзаменационная работа билет №25. Дисциплина «Математический анализ. Часть 2-я.» Агульник +скриншоты от руки в архиве
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №2
Билет №2 1. Вычисление двойного интеграла в декартовой и в полярной системе координат. 2. Найти градиент функции z=f(x,y) в точке M(1;1): z=x^(3)+y^(3)+3xy-8 3. Найти пределы двукратного интеграла в полярных координатах, если область интегрирования D есть круг: x^(2)+y^(2)=4y 4. Определить, сходится ли данный ряд (см. скрин). 5. Найти область сходимости степенного ряда (см. скрин). 6. Найти частное решение дифференциального уравнения при данном начальном условии y'-(y/x)=(2/x^(2), y(1)=1
User Roma967 : 18 августа 2019
650 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №2 promo
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №4
Билет №4 1. Понятие тройного интеграла. Геометрический смысл, свойства тройного интеграла. 2. Найти градиент функции z=f(x,y) в точке M(1;1): z=e^(x+2y)+arctg(3x+y) 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже (см. скрин). 4. Разложить функцию в ряд Фурье: f(x)=2x на отрезке [-1/2;1/2] 5. Найти область сходимости степенного ряда (см. скрин). 6. Найти общее решение дифференциального уравнения: (x+2xy)dx+(1+x^(2))dy=0 7. Найти частное решение дифференциал
User Roma967 : 18 августа 2019
650 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №4 promo
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №6
Билет №6 1. Приложения тройного интеграла: объем, масса тела. 2. Найти градиент функции z=f(x,y) в точке M(1;1): z=x/(x^(2)+y^(2)) 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже (см. скрин). 4. Исследуйте ряд на абсолютную сходимость (см. скрин). 5. Данную функцию разложить в ряд Тейлора по степеням х: f(x)=x^(3)e^(-x^(2)) 6. Решить уравнение: y+корень(x^(2)+y^(2))-xy'=0 7. Найти частное решение дифференциального уравнения при данных начальных условиях:
User Roma967 : 18 августа 2019
650 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №6 promo
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №1
Билет №1 1. Понятие двойного интеграла. Геометрический смысл, свойства двойного интеграла. 2. Найти градиент функции z=f(x,y) в точке M(1;1): z=x^(2)-8xy+8y^(2)+3 3. Найти пределы двукратного интеграла, если область ограничена линиями: y=корень(x), x+y=2, y=0. 4. Найти общее решение дифференциального уравнения y'=(x/y)+(y/x) 5. Найти частное решение дифференциального уравнения, удовлетворяющее данным начальным условиям: y''+y'-2y=0, y(0)=0, y'(0)=1 6. Определить, сходится ли данный ряд, и
User Roma967 : 18 августа 2019
650 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №1 promo
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №8
Билет №8 1. Градиент функции нескольких переменных. Производная функции по направлению. 2. Найти градиент функции z=f(x,y) в точке M(1;1): z=4x^(2)-8xy+8y^(2)+12x-3 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже (см. скрин). 4. Найти область сходимости ряда (см. скрин). 5. Разложить в ряд Фурье функцию y=x+1 в интервале ]-1;1[. 6. Решить дифференциальное уравнение с данным начальным условием: y'-y=e^(x)-x, y(0)=1 7. Найти общее решение дифференциального у
User Roma967 : 18 августа 2019
650 руб.
Экзаменационная работа по дисциплине: Математический анализ (часть 2). Билет №8 promo
Киотский протокол как механизм регулирования глобальных экологических проблем на международном уровне
Введение 3 Глава I. История создания Киотского протокола 4 Возникновение проблемы 4 Создание Межправительственной группы экспертов по изменению климата 7 Рамочная Конвенция ООН по изменениям климата 11 Глава II. Киотский протокол. Суть и цели 15 Подготовка Киотского протокола: переговорный процесс 15 Содержание Киотского протокола. Обязательства сторон 19 Основные аспекты протокола и его международное значение 25 Глава III. Позиции стран 31 3.1 Соединенные Штаты Америки 33 3.2 Европе
User evelin : 17 ноября 2013
10 руб.
Гидравлика Севмашвтуз 2016 Задача 49 Вариант 0
Определить ширину проходного отверстия b и жесткость пружины c переливного клапана, который начинает перекрывать проходное отверстие при падении давления на входе рвх до 10 МПа и полностью перекрывает его при рвх=9 МПа. Перепад давления на агрегате Δр=рвх-рсист при полностью открытом золотнике и расходе Q должен быть 0,3 МПа. Проходное отверстие выполнено в виде кольцевой щели, диаметр золотника D, коэффициент расхода окна золотника μ=0,62; ρ=850 кг/м³.
User Z24 : 2 ноября 2025
180 руб.
Гидравлика Севмашвтуз 2016 Задача 49 Вариант 0
Алексеев В.И. Конспект лекций по курсу Литология
Санкт-Петербургский государственный горный ин-т. СПб, 2010. 65 с. Рассмотрены современные представления о составе и строении осадочных горных пород. Приведена классификация осадочных пород и обсуждены петрографические особенности их главнейших представителей. Особое внимание уделено составу и строению наиболее распространенных в земной коре пород – обломочных, глинистых, карбонатных, кремнистых и осадочно-вулканогенных.
User OstVER : 17 сентября 2012
2 руб.
Теплотехника 18.03.01 КубГТУ Задача 1 Вариант 00
Сравнить мощность, затраченную на повышение давления воздуха в одно- и двухступенчатом компрессоре в случае политропного сжатия с показателем политропы n. Объемный расход воздуха при параметрах всасывания — V1, начальные параметры р1=0,1 МПа и t1, а конечное давление — рк. Определить также температуру воздуха на выходе из компрессора и количество теплоты, отводимое от цилиндров и промежуточного теплообменника. Изобразить условно процессы одно- и двухступенчатого сжатия на рυ-, Ts — диаграммах.
User Z24 : 23 января 2026
200 руб.
Теплотехника 18.03.01 КубГТУ Задача 1 Вариант 00
up Наверх