Алгебра и геометрия. Контрольная работа. Вариант 6

Цена:
15 руб.

Состав работы

material.view.file_icon 61542C82-172A-42FB-A148-D889E8C5E3DC.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.

Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:

длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.

Проверил: Агульник О. Н.
Алгебра и геометрия. ВАРИАНТ №6. Контрольная работа.
(Задания варианта на скриншоте) 1. Решить систему уравнений методом Крамера и методом Гаусса 2. Для данной матрицы найти обратную матрицу 3. Даны векторы Найти: a) угол между векторами и ; b) проекцию вектора на вектор ; c) векторное произведение ; d) площадь треугольника, построенного на векторах . 4. Даны координаты вершин треугольника a) составить уравнение стороны АВ b) составить уравнение высоты АD c) найти длину медианы ВЕ d) найти точку пересечения высот треугольника
User Seraxira : 10 апреля 2023
130 руб.
Алгебра и геометрия. ВАРИАНТ №6. Контрольная работа.
Контрольная работа. Алгебра и геометрия. Вариант №6
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. 1.6 Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: 1. длину ребра А1А2; 2. угол между ребрами А1А2 и А1А4; 3. площадь грани А1А2А3; 4. уравнение плоскости А1А2А3. 5. объём пирамиды А1А2А3А4. 2.6. А1 ( 4; 4; 10), А2 ( 4;10; 2), А3 ( 2; 8; 4), А4 ( 9; 6; 4).
User Inna2708 : 1 декабря 2014
40 руб.
Алгебра и геометрия. Контрольная работа. Вариант №6
1. Дана система трёх линейных уравнений. Найти решение её методом Крамера и методом Гаусса . 3x+4y+2z=8 2x-y-3z=-4 x+5y+z=0 2. Даны координаты вершины пирамиды A1A2 A3 A4. А1 ( 4; 4; 10), А2 ( 4;10; 2), А3 ( 2; 8; 4), А4 ( 9; 6; 4). Найти: 1. длину ребра А1А2. 2. угол между ребрами A1A2 и A1A4 3. площадь грани A1A2 A3 4. уравнение плоскости A1A2 A3 5. объем пирамиды A1A2 A3 A4
User nikakiss : 9 ноября 2013
50 руб.
Контрольная работа по дисциплине «Алгебра и геометрия» Вариант 6
1. Решить систему уравнений методом Крамера и методом Гаусса 2. Для данной матрицы найти обратную матрицу 3. Даны векторы Найти: a) угол между векторами; b) проекцию вектора на вектор; c) векторное произведение; d) площадь треугольника, построенного на векторах. 4. Даны координаты вершин треугольника a) составить уравнение стороны АВ b) составить уравнение высоты АD c) найти длину медианы ВЕ d) найти точку пересечения высот треугольника АВС. 5. Даны координаты вершин пирамиды Найти: a) урав
User Nadyuha : 15 декабря 2016
200 руб.
Контрольная работа по дисциплине «Алгебра и геометрия» Вариант 6
Контрольная работа по алгебре и геометрии, вариант № 6, 2013г
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти: 1. длину ребра А1А2; 2. угол между ребрами А1А2 и А1А4; 3. площадь грани А1А2А3; 4. уравнение плоскости А1А2А3. 5. объём пирамиды А1А2А3А4. 2.10. А1 ( 6; 6; 5), А2 ( 4; 9; 5), А3 ( 4; 6; 11), А4 ( 6; 9; 3).
User DmitrTolmach : 5 ноября 2014
100 руб.
Контрольная работа по дисциплине: Алгебра и геометрия. Вариант №6
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. 3x+4y+2z=8 2x-y-3z=-4 x+5y+z=0 Задача 2. Даны координаты вершин пирамиды A1,A2,A3,A4. Найти: 1) длину ребра A1,A2; 2) угол между ребрами A1,A2 и A1,A4 ; 3) площадь грани A1,A2,A3; 4) уравнение плоскости A1,A2,A3. 5) объём пирамиды A1,A2,A3,A4.
User Amor : 29 октября 2013
130 руб.
Контрольная работа по дисциплине: Алгебра и геометрия. Вариант № 6
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. Задача 2. Даны координаты вершин пирамиды . Найти: 1) длину ребра ; 2) угол между ребрами и ; 3) площадь грани ; 4) уравнение плоскости . 5) объём пирамиды .
User xtrail : 3 апреля 2013
125 руб.
Алгебра и геометрия. Вариант №6
Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису. Операции над векторами, Сложение векторов, Модуль суммы векторов и т.д.
User mortalweb2 : 16 октября 2021
100 руб.
Алгебра и геометрия. Вариант №6
Полуось 1221-2407082 заднего моста трактора Беларус-1221 (рабочий чертеж)
Полуось или вал ведущего моста обеспечивает подвижный контакт двигателя и ведущих колес, передаёт усилия, поддерживает способность поворачивать колёса и позволяет подвеске плавное движение при минимальных вибрациях. Главное назначение полуосей автомобиля принимать на себя действие силы тяжести, припадающей на колесо из-за тяговых и тормозных усилий. На неё приходятся изгибающие моменты и последствия боковой силы при заносах. В конструкции полуоси есть два шарнира, которые обеспечивают равномерну
User maobit : 5 апреля 2018
390 руб.
Полуось 1221-2407082 заднего моста трактора Беларус-1221 (рабочий чертеж)
Лабораторная №3 Метрология, стандартизация и сертификация в инфокоммуникациях. Вариант 20
Частота сигнала, кГц Показания вольтметров, погрешность, результат Электронный милливольтметр среднеквадратического значения Электромагнитный вольтметр Электродинамический вольтметр Показание вольтметра, В Показание вольтметра, В Систематическая погрешность Показание вольтметра, В Систематическая погрешность абсолютная, В относительная, % абсолютная, В относительная, % 0,02 2,5 2,5 0 0 2,5 0 0 1 2,5 2,5 0 0 2,5 0 0 3 2,5 2,15 -0,35 -14 2,5 0 0 5 2,5 1,8 -0,7 -28 2,5 0 0 10 2,5 1,3125
User evgenn27 : 17 ноября 2020
100 руб.
Проектирование понизительной подстанции электроснабжения электрифицированной железной дороги
Целью данного курсового проекта является проектирование понизительной подстанции электроснабжения электрифицированной железной дороги. Проект предусматривает выбор основного силового оборудования ОРУ подстанции, разработку однолинейной схемы главных электрических соединений подстанции, расчет параметров и выбор оборудования собственных нужд подстанции, расчет заземляющего устройства, а также определение стоимости и расчёт затрат на переработку энергии проектируемой подстанции. СОДЕРЖАНИЕ Введени
User Ulch : 12 октября 2011
Клапан переливной
Переливной клапан служит для поддержания заданного давления в гидравлической или пневматической системе, к которой он присоединяется с помощью конической резьбы. Под действием пружины 5 клапан прижимает шарик 7 к отверстию А (см. схему) в корпусе 1 и перекрывает выход рабочей среды из системы. Под давлением рабочей среды шарик клапана отодвигается и сжимает пружину, в результате чего отверстие А открывается и избыточная рабочая среда устремляется из отверстия А в отверстие Б. Для регулирования
User vermux1 : 14 ноября 2017
170 руб.
Клапан переливной
up Наверх