Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №7.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Kr.cs
material.view.file_icon Kr.exe
material.view.file_icon System.ValueTuple.dll
material.view.file_icon КР.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ!
ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ,
ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ!
ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ!

Перейти к канонической форме задачи линейного программирования.
Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max
{█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0)
  Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
 Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2.
 Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия.
 Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре пароля.
Вариант 7
Z(x_1,x_2 )=4*x_1+5*x_2→max
{█(10*x_1+〖3*x〗_2≥45@x_1+x_2≥8@〖3*x〗_1+5*x_2≥30@x_1;x_2≥0)
Вопросы: 3,6,13,17

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Курсовая работа
Оценка:Хорошо
Дата оценки: 19.12.2019
Рецензия:Уважаемый,
Галкина Марина Юрьевна
Алгоритмы и вычислительные методы оптимизации. Курсовая. Вариант №7
Перейти к канонической форме задачи линейного программирования. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.1. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия. Ответить на вопросы для защиты курсовой ра
User blur : 28 апреля 2024
499 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовая. Вариант №7
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Решение задачи линейного программирования, теория двойственности Присылаемый на проверку архив должен содержать 2 файла: файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты; файл с исходным текстом программы (программу можно писать на любом языке программирования). Задание на курсовую работу 1 Перейти к канонической форме з
User Алексей134 : 5 марта 2021
100 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Задание 1. Перейти к канонической форме задачи линейного программирования. 2. Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. 3. Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполнении программы из п.2. 4. Составить двойственную задачу к исходной и найти ее решение на основании теоремы равновесия. 5. Ответить на вопросы
User Михаил18 : 26 сентября 2019
100 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант 4 курсовой проект
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №4.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №3.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 28 августа 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №2.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 29 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №6.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 3 мая 2019
139 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №9.
ВНИМАНИЕ! В 2020 ГОДУ ЗАДАНИЕ ИЗМЕНИЛОСЬ! ЭТО РЕШЕНИЕ НЕ ПОДХОДИТ ДЛЯ НОВОГО ЗАДАНИЯ, ГДЕ ФУНКЦИЯ МИНИМИЗИРУЕТСЯ! ПЕРЕДЕЛКА НЕ ОСУЩЕСТВЛЯЕТСЯ! Перейти к канонической форме задачи линейного программирования. Z(x_1,x_2 )=p_1*x_1+p_2*x_2→max {█(a_1*x_1+a_2*x_2≥a@b_1*x_1+b_2*x_2≥b@c_1*x_1+c_2*x_2≥c@x_1;x_2≥0) Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц. Решить исходную задачу графически и
User sibguter : 18 апреля 2019
139 руб.
Определение удельного заряда электрона методом магнетрона
Работа 4.1 Определение удельного заряда электрона методом магнетрона 1.Цель работы Познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона. 2.Основные теоретические сведения Магнетроном называется электровакуумное устройство, в котором движение электронов происходит во взаимно перпендикулярных электрическом и магнитном полях. Магнетрон является источником ... 3. Описание лабораторной установки
User salut135 : 21 января 2011
45 руб.
Лабораторная работа №2. Теория электрической связи. Исследование помехоустойчивости методов приёма дискретных сигналов
1. Задание к лабораторной работе 1) Ознакомиться с лабораторной установкой. 2) Исследовать зависимость средней вероятности ошибки на выходе решающего устройства приемника от отношения сигнал/шум pош = f(h2) для сигналов с дискретной амплитудной модуляцией при: - когерентном приеме и оптимальной фильтрации; - некогерентном приеме и оптимальной фильтрации; - некогерентном приеме и неоптимальной фильтрации. 3) Сравнить помехоустойчивость различных методов приема дискретных сигналов, построив кри
User rukand : 31 октября 2013
50 руб.
Курсовая работа. Интерфейсы и протоколы цифровых систем коммутации. Проект ЦС СТС на базе SI 2000 V.5. Вариант 01.
Курсовая работа. Интерфейсы и протоколы цифровых систем коммутации. Проект ЦС СТС на базе SI 2000 V.5. Вариант 01. 1. Назначение АТС: центральная станция типа SI-2000 V.5 2. Емкость станции: 2.1. Количество абонентов, включенных в центральную АТС: 5010 2.2. Количество местных таксофонов: 15 2.3. Количество междугородных таксофонов: 4 2.4. Количество кабин переговорных пунктов: 15 2.5. Количество оконечных устройств передачи данных: 12 2.6. Количество пользователей ISDN: доступ 30B+D: 2 доступ 2
User rmn77 : 12 октября 2019
50 руб.
Курсовая работа. Интерфейсы и протоколы цифровых систем коммутации. Проект ЦС СТС на базе SI 2000 V.5. Вариант 01.
Использование жидкого мыла с лечебной целью
Жидкое мыло считается наиболее удобным в применении и ассортимент его возрастает из года в год. Во-первых, продукт легко растекается по поверхности кожи, массируя ее, смывая загрязнения, во-вторых, благодаря таре с дозатором, мыло легко дозируется и исключается вероятность загрязнения и соответственно, сохраняется качество продукта. Также, часто жидкое мыло обладает не только очищающим, но и косметическим профилактическим эффектом, поскольку в жидкую форму легче вводить различные биологически- а
User Elfa254 : 13 октября 2013
10 руб.
up Наверх