Дискретная математика. Лабораторные работы 1-3. Для всех вариантов.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа 1.
Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметрич-ность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подаётся множество A из n элементов и список упорядоченных пар, задающий отноше-ние R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного мно-жества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отноше-ния либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, вы-брав соответствующий пункт меню. Другой способ – выполнять редактирование непосредст-венно самой матрицы отношения, после чего также повторить вычисления. Возможным вари-антом является автоматический пересчёт – проверка свойств отношения – после изменения лю-бого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (раз-мер нового множества может тоже быть другим).
Лабораторная работа 2.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Лабораторная работа 3.
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No1.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, симметричность, антисимметрич-ность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подаётся множество A из n элементов и список упорядоченных пар, задающий отноше-ние R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера nn;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного мно-жества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отноше-ния либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, вы-брав соответствующий пункт меню. Другой способ – выполнять редактирование непосредст-венно самой матрицы отношения, после чего также повторить вычисления. Возможным вари-антом является автоматический пересчёт – проверка свойств отношения – после изменения лю-бого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (раз-мер нового множества может тоже быть другим).
Лабораторная работа 2.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Лабораторная работа 3.
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No1.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Дополнительная информация
май 2019, зачтено без замечаний
в программе указано имя автора
в программе указано имя автора
Похожие материалы
Дискретная математика Лабораторная работа № 1 (все варианты)
still65
: 16 января 2016
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается требуемая операция (посредством текстового меню, вводом определенного символа в ответ на запрос – выбор по желанию автора). Операции: вхождение AB, AB, AB, A\B (дополнительно: B\A, AB, BA).
3. Программа посредством алгоритма типа слияния определяет результат выбранной операции и выдает его на экран с необходимыми пояснениями. Одновремен
100 руб.
Дискретная математика. Лабораторная работа №1. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множеств выбирается
30 руб.
Дискретная математика. Лабораторная работа № 1
svladislav987
: 16 апреля 2021
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Дискретная математика. Лабораторная работа №1
Bodibilder
: 14 марта 2019
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множес
15 руб.
Дискретная математика. Лабораторная работа №1
sibguter
: 5 июня 2018
Тема: Множества и операции над ними
Задание
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается т
49 руб.
Лабораторная работа № 1. Дискретная математика
Antipenko2016
: 8 января 2017
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств
150 руб.
Лабораторная работа №1 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 1.Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается тре
200 руб.
Дискретная математика. Лабораторная работа №1
PShulepov
: 13 октября 2013
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
100 руб.
Другие работы
Контрольная работа ПО ДИСЦИПЛИНЕ «ОПЕРАЦИОННЫЕ СИСТЕМЫ». Вариант №13.
teacher-sib
: 1 сентября 2023
Вариант 13
Теоретический вопрос:
Управление памятью в Unix. Страничная организация памяти. Физическая память и виртуальное адресное пространство.
Задание:
1. Придумайте регулярное выражение, соответствующее URL, с использованием протокола http. Найдите все строки, содержащие такие URL в файлах каталога /etc.
2. Написать скрипт, который выводит количество строк в каждом файле из каталога, переданного в качестве параметра. В конце должно выводиться общее количество файлов и строк в них. Есл
400 руб.
Теоретичний аналіз понять "діти з вадами розвитку", "діти з вадами функцій", "діти з відхиленнями у стані здоров'я", "неповносправні особи"
Lokard
: 7 февраля 2014
Вступ
Актуальність дослідження. Одним із найважливіших чинників прогресивного розвитку суспільства є гуманне, милосердне та дбайливе ставлення до дітей і молоді, які позбавлені можливості вести повноцінне життя внаслідок вад фізичного та психічного розвитку.
До сьогодні в Україні немає єдиного терміну стосовно осіб, що мають фізичні чи психічні відхилення у здоров’ї. Так, в засобах масової інформації, спеціальній літературі вживаються поняття: інвалід; особи з обмеженими функціональними можливос
19 руб.
Учет затрат и калькулирование себестоимости продукции вспомогательных производств организации пищевой промышленности
Elfa254
: 4 сентября 2013
СОДЕРЖАНИЕ:
1. Экономическая сущность и задачи учета затрат, калькулирование себестоимости продукции вспомогательных производств организаций пищевой промышленности.. 5
1.1. Сущность и классификация затрат вспомогательных производств. 8
1.2. Себестоимость продукции (услуг) и принципы е формирования в современных условиях хозяйствования. 11
1.3. Значение и задачи учета затрат и калькулирование себестоимости продукции вспомогательных производств. 14
1.4. Краткая экономичес
5 руб.
Анализ разработки, совершенствование системы разработки Губкинского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтег
nakonechnyy_lelya@mail.ru
: 2 ноября 2017
Анализ разработки, совершенствование системы разработки Губкинского месторождения-Курсовая работа-Дипломная работа-Специальность-Разработка и эксплуатация нефтяных и газовых месторождений РЭНГМ-Нефтегазовое дело-Эксплуатация и обслуживание объектов нефтегазодобычи
2. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ
2.1. Основные проектные решения и текущее состояние разработки
В 1968г. впервые по Губкинскому месторождению институтом ВНИИГаз и его Тюменским филиалом был составлен “Комплексный проект опытно-промышленной
1626 руб.