Дискретная математика. Лабораторная работа 2 (2019). Для всех вариантов.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа 2.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Дополнительная информация
май 2019, зачтено без замечаний
в программе указано имя автора
в программе указано имя автора
Похожие материалы
Дискретная математика. Лабораторная работа №2. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
30 руб.
Дискретная математика. Лабораторная работа № 2
svladislav987
: 16 апреля 2021
Поставленная задача:
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постро
200 руб.
Дискретная математика. Лабораторная работа №2
Bodibilder
: 14 марта 2019
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
15 руб.
Дискретная математика. Лабораторная работа №2
sibguter
: 5 июня 2018
Тема: Отношения и их свойства
Задание
Бинарное отношение R на конечном множестве A: R A2– задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице би
49 руб.
Лабораторная работа № 2. Дискретная математика
Ольга89
: 9 марта 2016
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по
50 руб.
Дискретная математика. Лабораторная работа № 2
alexxxxxxxela
: 5 января 2014
Лабораторная работа No 2
Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять
70 руб.
Лабораторная работа №2 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бин
210 руб.
Дискретная математика. Лабораторная работа №2
GTV8
: 10 сентября 2012
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необхо
250 руб.
Другие работы
Клапан - МЧ00.25.00.00 СБ
.Инженер.
: 17 марта 2023
С.К. Боголюбов. Чтение и деталирование сборочных чертежей. Альбом. 1986 г. Задание 25. Клапан. Деталирование. Сборочный чертеж. Модели.
Клапан предназначен для изменения величины потока воды, проходящей по трубопроводу, а также для периодических отключений одной части трубопровода от другой.
Клапан состоит из корпуса поз. 1 и крышки поз. 2. Детали поз. 5, 6, 8 являются запорным устройством. Изменение проходного отверстия между клапаном поз. 6 и седлом поз. 7 регулируется вращением маховичка поз
170 руб.
Экзаменационная работа по дисциплине "Теория сложностей вычислительных процессов и структур" Билет №8
ilya2014
: 15 мая 2015
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаро
250 руб.
Проектирование системы отопления и вентиляции жилого четырехэтажного двухсекционного здания с чердаком и неотапливаемым подвалом в г. Владимир
OstVER
: 11 ноября 2013
ВВЕДЕНИЕ…………………………………………………………………….......... 3
1. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ НАРУЖНЫХ ОГРАЖДЕНИЙ …………. 4
2. РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ ПОМЕЩЕНИЯМИ ЗДАНИЯ ……….....… 10
3. ОТОПЛЕНИЕ …………………………………………………………………... 12
Выбор и описание системы отопления ………………………………...….. 12
Технико-экономическое сравнение и выбор отопительных
приборов……………………………………………………………………... 13
Подбор водоструйного элеватора……………………………………..…… 14
4. ВЕНТИЛЯЦИЯ …………………………………………………………….…… 15
4.1 Выбор и описание системы вентиляц
40 руб.
Является ли контроль или мониторинг деятельности и методов управления организацией целью глобального договора:
ann1111
: 9 июня 2022
Является ли контроль или мониторинг деятельности и методов управления организацией целью глобального договора:
Выберите один ответ:
a. нет
a. да
10 руб.