Дискретная математика. Лабораторная работа 2 (2019). Для всех вариантов.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Лабораторная работа 2.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Дополнительная информация
май 2019, зачтено без замечаний
в программе указано имя автора
в программе указано имя автора
Похожие материалы
Дискретная математика. Лабораторная работа №2. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
30 руб.
Дискретная математика. Лабораторная работа № 2
svladislav987
: 16 апреля 2021
Поставленная задача:
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить постро
200 руб.
Дискретная математика. Лабораторная работа №2
Bodibilder
: 14 марта 2019
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнят
15 руб.
Дискретная математика. Лабораторная работа №2
sibguter
: 5 июня 2018
Тема: Отношения и их свойства
Задание
Бинарное отношение R на конечном множестве A: R A2– задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице би
49 руб.
Лабораторная работа № 2. Дискретная математика
Ольга89
: 9 марта 2016
Лабораторная работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по
50 руб.
Дискретная математика. Лабораторная работа № 2
alexxxxxxxela
: 5 января 2014
Лабораторная работа No 2
Отношения и их свойства
Бинарное отношение R на конечном множестве A: RÍ A2 – задано списком упорядоченных пар вида (a,b), где a,bÎ A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять
70 руб.
Лабораторная работа №2 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 2 Отношения и их свойства
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бин
210 руб.
Дискретная математика. Лабораторная работа №2
GTV8
: 10 сентября 2012
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необхо
250 руб.
Другие работы
Экономическое регулирование предпринимательской деятельности
DocentMark
: 5 ноября 2013
Актуальность и острота избранной темы объективно детерминированы современными российскими процессами модернизации. Возникшие после краха советской системы новые органы власти, зародившиеся в условиях разгосударствления собственности предпринимательство с одной стороны, и предприниматели, с другой стороны, потребовали поиска путей и форм их взаимодействия. Совершенно очевидно, что никакая рыночная экономика, никакое демократическое обустройство общества немыслимы без становления и развития ч
15 руб.
Лабораторная работа №2 по дисциплине: Пакеты прикладных программ. Вариант №2 (12, 22 и т.д.)
Учеба "Под ключ"
: 29 октября 2016
Данная лабораторная работа состоит из 2-х частей.
ЧАСТЬ 1
Цель работы: Приобрести навыки использования возможностей MS Excel для моделирования случайных процессов.
Изучите материалы лекции 9.
Решите приведенные в лекции примеры и выполните задания к лабораторной работе.
ЧЕТНЫЕ ВАРИАНТЫ
Контрольное задание
В Интернет-магазине за час в среднем поступает 4 заказа на рекламируемый товар. Определите, какова вероятность того, что между двумя заказами товара пройдёт не более 10-ти минут.
Для решения и
400 руб.
Социнтерн и агрессия Ирака против Кувейта
Slolka
: 12 сентября 2013
Напомним о причинах взбудоражившего весь мир кризиса и о реакции на него сверхдержав и СБ ООН, с учетом которых Социнтерн вырабатывал свою позицию.
Как известно, 2 августа 1990 г. правящий в Ираке режим Саддама Хусейна совершил военное вторжение в суверенную соседнюю страну Кувейт и оккупировал ее. При этом он, желая придать своей акции видимость законности, заявил, что «иракские войска вошли в Кувейт в ответ на просьбу молодых кувейтских революционеров, свергнувших прежнее правительство и созд
10 руб.
Реконструкция ОАО Трест Камдорстрой с детальной разработкой агрегатного участка и стенда для разборки-сборки раздаточных коробок передач
Рики-Тики-Та
: 3 ноября 2017
Содержание
Введение……………………………………………………………………8
Раздел 1. Технико-экономическое обоснование проекта………………...8
1.1. Технико-экономические показатели
ОАО "Трест Камдорстрой" за 2005-2009 г.г……………………………...9
Раздел 2. Технологический расчет предприятия
ОАО Камдорстрой………………………………………………………..13
2.1. Выбор исходных данных…………………………………………….13
2.2. Расчет производственной программы по ТО и ТР…………………14
2.3. Расчет годового объе
825 руб.