Курсовая работа и Лабораторные работа №1,2,3 по дисциплине: Вычислительная математика. Вариант №09
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Курсовая работа
Вариант 9
{(y^'=6 sinx-(3+x)y@y(0)=k),
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
Фамилия на согласную.
Имя на гласную.
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
5. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.001?
6. Как определить, что при решении дифференциального уравнения методом Рунге-Кутта 4 порядка требуемая точность достигнута?
10. Приведите формулу оценки погрешности формулы линейной интерполяции.
14. Приведите формулу оценки погрешности формулы трапеций.
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos((x+10c)/c),c=N+1, N – последняя цифра пароля.
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sinc x,c=N+1, где N – последняя цифра пароля.
Вариант 9
{(y^'=6 sinx-(3+x)y@y(0)=k),
где k – наименьший положительный корень уравнения
Вопросы для защиты: 5, 6, 10, 14.
Фамилия на согласную.
Имя на гласную.
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках ;
определяет количество теплоты , выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на гласную букву) с шагом 0.01.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значениеxи соответствующее ему значение y);
результаты линейной интерполяции в точках (выводить следует в 2 столбика: значение xiи соответствующее ему значение yi);
количество теплоты Q.
Ответить на вопросы для защиты курсовой работы.
Вариант выбирается по последней цифре зачетной книжки.
5. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.001?
6. Как определить, что при решении дифференциального уравнения методом Рунге-Кутта 4 порядка требуемая точность достигнута?
10. Приведите формулу оценки погрешности формулы линейной интерполяции.
14. Приведите формулу оценки погрешности формулы трапеций.
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos((x+10c)/c),c=N+1, N – последняя цифра пароля.
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sinc x,c=N+1, где N – последняя цифра пароля.
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1-3
Оценка: Зачет
Дата оценки: 04.02.2020
Рецензия:Уважаемый ,
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 04.02.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Лабораторная работа 1-3
Оценка: Зачет
Дата оценки: 04.02.2020
Рецензия:Уважаемый ,
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Вычислительная математика
Вид работы: Курсовая работа
Оценка: Отлично
Дата оценки: 04.02.2020
Рецензия:Уважаемый ,
Галкина Марина Юрьевна
Помогу с вашим вариантом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
Похожие материалы
Курсовая работа и Лабораторные работы №№1-3 по дисциплине: Вычислительная математика. Вариант №2
IT-STUDHELP
: 6 февраля 2022
Курсовая работа
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.
800 руб.
Курсовая работа по дисциплине: Вычислительная математика. Вариант №09
IT-STUDHELP
: 12 февраля 2020
Курсовая работа
Вариант 9
фамилия - гласная
имя - гласная
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пу
500 руб.
Лабораторная работа №1,2,3 по дисциплине: Вычислительная математика. Вариант №09
IT-STUDHELP
: 12 февраля 2020
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округлен
500 руб.
Лабораторная работа №3 по дисциплине ''Вычислительная математика''
hikkanote
: 9 января 2019
Лабораторная работа 3.
1.Написать программу нахождения определенного интеграла с точностью до 0.0001 двумя методами: трапеций и Симпсона. Для достижения заданной точности использовать метод двойного пересчета. Начальный шаг интегрирования взять равным половине интервала интегрирования.
2.Вывести для каждого метода шаг интегрирования, понадобившийся для достижения заданной точности, и приближенное значение интеграла.
Вариант :4
250 руб.
Лабораторная №3 по дисциплине "Вычислительная математика". Вариант №3.
hunter911
: 15 сентября 2012
Лабораторная №3 по вычислительной математике, 2 семестр.
Тема: Решение нелинейных уравнений.
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие .... , (e – заданная точность), при этом .... Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблиц
100 руб.
Курсовая и Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №18
IT-STUDHELP
: 3 мая 2023
Курсовая работа
Задание к работе:
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.
800 руб.
Курсовая и Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №15
IT-STUDHELP
: 1 декабря 2022
Лабораторная работа No1
по дисциплине:
«Вычислительная математика»
---------------------------------------------
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шаго
800 руб.
Курсовая и Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 1 декабря 2022
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округлен
800 руб.
Другие работы
Контрольная работа по дисциплине: Технологии виртуализации. Вариант №3
holm4enko87
: 17 июня 2025
Вопросы:
1. Что виртуализируется на уровне API, ABI? Какие преимущества и недостатки виртуализации на этом уровне? Какие средства виртуализации на этом уровне вы знаете?
2. Каким образом в архитектуре x86 реализована поддержка аппаратной виртуализации процессора?
300 руб.
Расчет коробки передач для автомобилей семейства ЗИЛ «Бычок».
Aronitue9
: 5 октября 2012
Введение 3
Техническая характеристика 4
ГЛАВА 1. Тяговый расчет АТС
1.1. Расчет потребной мощности двигателя 6
1.2. Внешняя скоростная характеристика двигателя 7
1.3. Определение передаточных чисел элементов трансмиссии 8
1.4. Построение тяговой и динамической характеристик АТС 10
1.5. Построение кинематической схемы АТС 15
ГЛАВА 2. Расчет элементов конструкции
2.1. Расчет зубчатых передач 15
2.3. Расчет валов 33
2.4. Расчет подшипников 54
ГЛАВА 3. Сборка агрегата
3.1. Сборка и разборка коро
42 руб.
Техническое обеспечение технологии возделывания озимой пшеницы ОАО «Маложинский» Брагинского района с модернизацией выравнивателя к комбинированному почвообрабатывающему агрегату АКШ-7,2
Shloma
: 18 января 2021
Дипломный проект состоит из расчетно-пояснительной записки объемом 87 с., в т.ч. 20 иллюстрированных литературных источников, 10 иллюстраций, 2 приложений и 9 листов графической части.
Ключевые слова: ТЕХНОЛОГИЯ, ВОЗДЕЛЫВАНИЕ, ОЗИМАЯ ПШЕНИ-ЦА, МОДЕРНИЗАЦИЯ, ПОЧВООБРАБОТКА, ВЫРАВНИВАНИЕ, ПОКАЗАТЕЛИ, АГРЕГАТ, ПРОИЗВОДИТЕЛЬНОСТЬ, СЕБЕСТОИМОСТЬ, ЗАТРАТЫ.
В первой главе рассмотрена производственно-экономическая деятельность ОАО «Маложинский», сформулированы цель и задачи проекта.
Вторая глава соде
1590 руб.
Курсовой проект. Интернет-технологии
gnv1979
: 26 декабря 2016
Задание.
Используя описанные команды создайте стиль следующего вида:
Для команды <BODY> задайте
• пустое поле сверху и снизу во всем документе
• пустое поле слева - 5em; пустое поле справа - 2em
• цвет фона - светло-серый, цвет текста - черный.
Установите в данном тексте цвет не посещенных гиперссылок - коричне-вый, посещенных - зеленый, стиль шрифта - Arial.
Абзацы: на белом фоне. У первого абзаца - вертикальная одинарная красная черта слева; у второго абзаца - вертикальная двойная с
20 руб.