Вычислительная математика. Лабораторные работы №№1-3. Вариант №0
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No 2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Фамилия на согласную.
Лабораторная работа No 3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
Фамилия на согласную
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять N – последняя цифра пароля.
Лабораторная работа No 2. Приближенное решение систем линейных уравнений
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Фамилия на согласную.
Лабораторная работа No 3. Численное дифференцирование
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять где N – последняя цифра пароля.
Фамилия на согласную
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
108 руб.
Лабораторная работа № 1. Вычислительная математика. Вариант № 0
Despite
: 14 мая 2015
Лабораторная работа №1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
60 руб.
Вычислительная математика. Лабораторные работы 1-5. Вариант 0
Алексей134
: 24 марта 2020
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функц
150 руб.
Вычислительная математика. Лабораторные работы №1-3. Вариант 0.
SNF
: 6 июня 2019
Лабораторная работа No 1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему о
702 руб.
Лабораторные работ №№1-3 вычислительная математика. Вариант 0. СИБГУТИ ДО
dezoway
: 17 сентября 2023
В архиве содержится 3 лабораторных работы, выполненные на языке программирования Python, решения "вручную" выполнены в Word. Краткое описание заданий:
Лаб 1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Лаб 2. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной б
350 руб.
Вычислительная математика. Лабораторные работы №№1, 2, 3. Вариант 0.
serg04
: 8 июля 2019
Лабораторная работа № 1. Линейная интерполяция.
Лабораторная работа № 2. Приближенное решение систем линейных уравнений.
Лабораторная работа № 3. Численное дифференцирование
Июль, 2019. Зачтено. Вариант 0, фамилия на гласную
400 руб.
Вычислительная математика. Вариант 0.
bananchik
: 31 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
235 руб.
Вычислительная математика. Лабораторные работы № 1-3. Вариант 0 (фамилия на согласную).
nik200511
: 23 января 2020
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение ф
344 руб.
Другие работы
Микропроцессорные системы (часть 1). Лабораторная работа 3, вариант 6.
nik200511
: 20 мая 2023
Лабораторная работа 3
1. Цель работы
1.1. Изучить особенности работы параллельных портов микроконтроллера.
1.2. Изучить схемы подключения кнопок и датчиков к цифровым микросхемам.
1.3. Научиться определять состояние кнопок при помощи программы.
1.4. Изучить способы отладки программ на лабораторном стенде ЛЭСО1.
2. Задание к работе в лаборатории
2.1. Разработать программу, анализирующую состояние битов портов P1.0, P1.1, P1.2, P1.3 и зажигающую соответствующие светодиоды. В таблице.1 показано,
49 руб.
Модернизация зерновой жатки ЖЗК-7 комбайна КЗС-1218 (конструкторский раздел дипломного проекта)
kreuzberg
: 11 июля 2018
СОДЕРЖАНИЕ
2. АНАЛИЗ АНАЛОГОВ КОНСТРУКЦИЙ И ПАТЕНТНЫЙ ПОИСК ……
3. ОБОСНОВАНИЕ ПРИНЯТОЙ К МОДЕРНИЗАЦИИ КОНСТРУКЦИИ..
4. ТЕХНОЛОГИЧЕСКИЙ РАСЧЕТ ЖАТКИ……
5. КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА…
6. ЭНЕРГЕТИЧЕСКИЙ РАСЧЕТ…
7. ПРОЧНОСТНОЙ РАСЧЕТ……
8. ОПИСАНИЕ КОНСТРУКЦИИ
8.1 Описание конструкции зерноуборочного комбайна
8.2 . Описание конструкции модернизированной жатки………………
9.РАЗРАБОТКА МЕРОПРИЯТИЙ ПО ЭКСПЛУАТАЦИИ, ТЕХНИЧЕС-КОМУ ОБСЛУЖИВАНИЮ И РЕМОНТУ
3. ОБОСНОВАНИЕ ПРИНЯТОЙ КОНСТРУ
999 руб.
Привод - 01.018 СБ
.Инженер.
: 19 сентября 2022
В.А. Леонова, О.П. Галанина. Альбом сборочных чертежей для деталирования и чтения. Вариант 01.018 - Привод. Сборочный чертеж. Деталирование. Модели.
Для передачи вращения между валами, расположенными под углом друг к другу, применяется коническая передача.
Данная коническая передача смонтирована в корпусе 1. Вращение на вал 9 передается через муфту, показанную на чертеже условно. С вала 9 через конические зубчатые колеса 2 вращение передается на вал 19. На валу 19 штифтом 25 и винтом 22 закрепл
700 руб.
Государственное управление таможенным делом в России
Elfa254
: 2 августа 2013
ОГлавление
Введение
Глава I. Организационно-правовые основы таможенного дела в России
1.1 Таможенное дело в Российской Федерации и его правовые основы
1.2 Функции и полномочия таможенных органов
Глава II. Структура и деятельность Федеральной Таможенной службы РФ
2.1 Структура Федеральной таможенной службы
2.2 Взаимодействие Федеральной таможенной службы и Федеральной службы безопасности России
Заключение
Список нормативных актов и использованной литературы
Приложения
ВВЕДЕНИЕ
Данная работа посв
10 руб.