Вычислительная математика. Лабораторная работа №№1,2,3. Вариант №0.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Линейная интерполяция.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять, N – последняя цифра пароля.
Лабораторная работа No2. Приближенное решение систем линейных уравнений
Задание к работе:
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
Задание к работе:
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) Выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять ,где N – последняя цифра пароля.
Задание к работе:
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках ;
в) выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взять, N – последняя цифра пароля.
Лабораторная работа No2. Приближенное решение систем линейных уравнений
Задание к работе:
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
где с=0.01N, N– последняя цифра пароля.
Лабораторная работа No3. Численное дифференцирование
Задание к работе:
1. Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
2. Найти погрешность, с которой можно найти с вычисленным в пункте a) оптимальным шагом.
3. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
б) По составленной таблице вычисляет приближенные значения в точках по формуле центральной разностной производной;
в) Выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взять ,где N – последняя цифра пароля.
Дополнительная информация
Вид работы: Лабораторная работа 1-3
Оценка: Зачёт
Проверена: 27.06.2019
Рецензия: Уважаемая , замечаний нет.
Галкина Марина Юрьевна
Оценка: Зачёт
Проверена: 27.06.2019
Рецензия: Уважаемая , замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Вычислительная математика. Лабораторная работа №1. Вариант 0.
nik200511
: 6 июня 2019
Лабораторная работа №1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
108 руб.
Лабораторная работа № 1. Вычислительная математика. Вариант № 0
Despite
: 14 мая 2015
Лабораторная работа №1. Интерполяция: Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
60 руб.
Вычислительная математика. Лабораторные работы №№1-3. Вариант №0
bananchik
: 30 апреля 2020
Лабораторная работа No 1. Линейная интерполяция.
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение фун
345 руб.
Вычислительная математика. Лабораторные работы 1-5. Вариант 0
Алексей134
: 24 марта 2020
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функц
150 руб.
Вычислительная математика. Лабораторные работы №1-3. Вариант 0.
SNF
: 6 июня 2019
Лабораторная работа No 1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему о
702 руб.
Лабораторные работ №№1-3 вычислительная математика. Вариант 0. СИБГУТИ ДО
dezoway
: 17 сентября 2023
В архиве содержится 3 лабораторных работы, выполненные на языке программирования Python, решения "вручную" выполнены в Word. Краткое описание заданий:
Лаб 1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Лаб 2. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной б
350 руб.
Вычислительная математика. Лабораторные работы №№1, 2, 3. Вариант 0.
serg04
: 8 июля 2019
Лабораторная работа № 1. Линейная интерполяция.
Лабораторная работа № 2. Приближенное решение систем линейных уравнений.
Лабораторная работа № 3. Численное дифференцирование
Июль, 2019. Зачтено. Вариант 0, фамилия на гласную
400 руб.
Вычислительная математика. Вариант 0.
bananchik
: 31 мая 2020
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
1. Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
2. Написать программу, которая:
а) находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (
235 руб.
Другие работы
Проект агрегатної дільниці з розробкою технологічного процесу ПР переднього моста автомобіля ГАЗ
DoctorKto
: 3 июля 2013
Зміст
Перелік скорочень...........................................................................3
Анотація........................................................................................4
Вступ............................................................................................5
1 Характеристика об’єкту проектування........................................6
1.1 Загальна характеристика об’єкту проектування............................6
1.2 Вихідні дані до курсо
65 руб.
Гидравлика Севмашвтуз 2016 Задача 17 Вариант 5
Z24
: 30 октября 2025
Поршень диаметром D движется равномерно вниз в цилиндре, подавая жидкость Ж в открытый резервуар с постоянным уровнем (рис. 17). Диаметр трубопровода d, его длина L. Когда поршень находится ниже уровня жидкости в резервуаре на Н=5 м, потребная для его перемещения сила равна F. Определить скорость поршня и расход жидкости в трубопроводе. Коэффициент гидравлического трения трубы принять λ=0,03. Коэффициент сопротивления входа в трубу ξвх=0,5. Коэффициент сопротивления выхода в резервуар ξвых=1,0.
180 руб.
Скоба. Задание №64. Вариант №23
bublegum
: 30 августа 2021
Скоба Задание 64 Вариант 23
Заменить вид спереди разрезом А-А.
3d модель и чертеж (все на скриншотах изображено) выполнены в компасе 3D v13, возможно открыть и выше версиях компаса.
Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
85 руб.
Практическое задание №2. Физкультура.
studypro3
: 4 июля 2019
Практическое задание № 2
Тема: "Формирование умения обучать упражнениям расчлененным методом"
У. М. 3. - Уточните технику упражнений, расчлените его на части, покажите и организуйте их выполнение.
Ориентировка в занятиях. Ответьте на вопросы:
О. 1. Охарактеризуйте расчлененный метод обучения, в каких случаях он применяется.
Ч. 2. Назовите достоинства и недостатки данного метода обучения.
3. Назовите последовательность действий учителя при обучении упражнениям расчлененным методом
Ориентировка
300 руб.