Генерация подмножеств
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
Описание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит,
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечётных i значение этой функции равно 1, т.е. для нечётного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит,
Дополнительно:
Предоставить пользователю возможность задать исходное множество путём перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Дополнительная информация
2020 СИБГУТИ
Преподаватель: Бах Ольга Анатольевна
Зачет/
Преподаватель: Бах Ольга Анатольевна
Зачет/
Похожие материалы
Генерация подмножеств
ty4ka
: 23 сентября 2020
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
200 руб.
Лабораторная работа № 2: "Генерация подмножеств"
Daniil2001
: 11 декабря 2021
Лабораторная работа No 2 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
75 руб.
Лабораторная работа №2. Генерация подмножеств
Anza
: 17 июня 2019
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
50 руб.
Лабораторная работа № 4 Генерация подмножеств.
spfly
: 21 марта 2012
Лабораторная работа № 4 Генерация подмножеств.
Задание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В
100 руб.
Лабораторная работа 2 Дискретная математика - Генерация подмножеств
SOKOLOV
: 27 октября 2024
Лабораторная работа No 2 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качеств
224 руб.
Дабораторная работа №2. Дискретная математика. Генерация подмножеств
alexturin
: 16 октября 2019
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
100 руб.
Дискретная математика. Лабораторная работа № 4. Генерация подмножеств
nik200511
: 2 июля 2013
Постановка задачи, описание входных данных программы и ее результатов
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного
23 руб.
Лабораторная работа № 4 по дисциплине: Дискретная математика. Генерация подмножеств.
zhekaersh
: 1 марта 2012
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмнож
100 руб.
Другие работы
Машиностроительный комплекс
alex0701
: 15 апреля 2012
Место машиностроения в едином народном хозяйстве России. Размещение отраслей комплекса. Факторы, определяющие развитие и особенности размещения тяжелого машиностроения и приборостроения. Развитие производства станков и кузнечно-прессового оборудования.
60 руб.
Контрольная работа по дисциплине: Структуры и алгоритмы обработки данных (часть 1).
holm4enko87
: 18 ноября 2024
Задания для контрольной работы одинаковы для всех студентов. Начальные данные выбираются индивидуально в зависимости от задания в контрольной работе.
1. Для набора из 12 символов ФИО студента выполнить вручную сортировку методом прямого выбора (пример см. в лекциях, раздел 2.1). Определить количество необходимых сравнений и перестановок.
2. Для набора из 12 символов ФИО студента выполнить вручную шейкерную сортировку. Подсчитать количество необходимых сравнений и перестановок. Определить на ка
150 руб.
Лабораторная работа № 3 "ИССЛЕДОВАНИЕ СОГЛАСОВАННОГО ФИЛЬТРА ДИСКРЕТНЫХ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ" Вариант 16
Sandra197
: 9 января 2016
Цель работы:
Экспериментальное исследование характеристик сложных дискретных сигналов и особенностей их приёма согласованным фильтром.
100 руб.
Лабораторная работа №1 по дисциплине «Сети связи и системы коммутации» "Система нумерации"
DaemonMag
: 6 сентября 2011
Лабораторная работа
Система нумерации
Теоретический опрос:
1. Утверждение: «Общее число абонентов на местных сетях не может превысить емкость нумерации»
Верно ли такое утверждение?
2. Автоматическая междугородная телефонная связь (8-АВСаbххххх).
В качестве «А» какие цифры нельзя использовать?
3. Автоматическая междугородная телефонная связь (8-АВСаbххххх).
В качестве «а» какие цифры нельзя использовать?
4. Согласны ли вы со следующим утверждением:
«Междугородный индекс – это цифра или комб
50 руб.