Алгоритмы и вычислительные методы оптимизации. Лабораторная работа №2. Вариант №0
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Моделирование матричной игры 2×2
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение накопленного выигрыша к количеству сыгранных партий.
относительные частоты использования чистых стратегий каждым игроком.
3. Сравните результаты, полученные в п.1 и 2 и сделайте выводы.
Вариант выбирается по последней цифре пароля.
0. (10&5@8&17)
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, исходный текст программы (с указанием языка реализации), промежуточные результаты (матрицы после каждого шага исключений), результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение накопленного выигрыша к количеству сыгранных партий.
относительные частоты использования чистых стратегий каждым игроком.
3. Сравните результаты, полученные в п.1 и 2 и сделайте выводы.
Вариант выбирается по последней цифре пароля.
0. (10&5@8&17)
Дополнительная информация
Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 13.03.2019
Рецензия: Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Алгоритмы и вычислительные методы оптимизации
Вид работы: Лабораторная работа 2
Оценка: Зачет
Дата оценки: 13.03.2019
Рецензия: Уважаемый ,
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Вариант 0. Лабораторная работа №2. Алгоритмы и вычислительные методы оптимизации. ДО СИБГУТИ
bananchik
: 21 декабря 2020
Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение накопл
85 руб.
Вариант 0. Лабораторная работа №2 Алгоритмы и вычислительные методы оптимизации ДО СИБГУТИ
Petr1
: 15 апреля 2019
1. Решите аналитически матричную игру 2×2, заданную платежной матрицей (найдите оптимальные стратегии игроков и цену игры).
2. Напишите программу, моделирующую результаты игры, разыграв 100 партий. Программа должна выводить:
- результаты моделирования в виде таблицы с заголовками:
Номер партии Случайное число для игрока А Стратегия игрока А Случайное число для игрока В Стратегия игрока В Выигрыш игрока А Накопленный выигрыш А Средний выигрыш А
*средний выигрыш игрока А находится как отношение на
200 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №0
IT-STUDHELP
: 9 июля 2020
Язык программирования: Javascript
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
{█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при вып
620 руб.
Алгоритмы и вычислительные методы оптимизации. Вариант №0
IT-STUDHELP
: 9 июля 2020
Язык программирования: Python
Задание на курсовую работу
Перейти к канонической форме задачи линейного программирования.
{█(Z(x_1,x_2 )=p_1 x_1+p_2 x_2→min@a_1 x_1+a_2 x_2≥a@b_1 x_1+b_2 x_2≥b@c_1 x_1+c_2 x_2≥c@x_1;x_2≥0)
Написать программу, решающую задачу линейного программирования в канонической форме симплекс-методом с выводом всех промежуточных симплексных таблиц.
Решить исходную задачу графически и отметить на чертеже точки, соответствующие симплексным таблицам, полученным при выполне
800 руб.
Алгоритмы и вычислительные методы оптимизации. Курсовой проект. Вариант №0.
Алексей134
: 5 марта 2021
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1 Перейти к канонической форме з
100 руб.
Алгоритмы и вычислительные методы оптимизации
Anza
: 22 марта 2021
Лабораторная работа №1
Решения систем линейных уравнений методом Жордана-Гаусса
Написать программу, находящую решение системы линейных уравнений методом Жордана-Гаусса с выбором главного элемента в столбце.
Вариант выбирается по последней цифре пароля.
100 руб.
Алгоритмы и вычислительные методы оптимизации
snapsik
: 8 марта 2021
Курсовая работа
Решение задачи линейного программирования, теория двойственности
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, формулы используемых методов, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов), ответы на вопросы для защиты;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на курсовую работу
1. Перейти к к
200 руб.
Алгоритмы и вычислительные методы оптимизации. Лабораторная работа 2. Вариант 6.
nik200511
: 25 января 2024
Лабораторная работа No2
Моделирование матричной игры 2×2
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, аналитическое решение задачи, исходный текст программы (с указанием языка реализации), результаты работы программы (можно в виде скриншотов) и выводы;
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Решите аналитически матричную игру 2×2, заданную пла
37 руб.
Другие работы
Гидравлика Пермская ГСХА Задача 67 Вариант 4
Z24
: 4 ноября 2025
В баке А жидкость подогревается до определенной температуры tºC и самотеком по трубопроводу длиной l попадает в кормоцех. Напор в баке равен Н. Каким должен быть диаметр трубопровода, чтобы обеспечивать расход при манометрическом давлении в конце трубопровода не ниже рм? Построить пьезометрическую и напорную линии. Задачу решить методом последовательного приближения, задавшись ориентировочно значением диаметра трубопровода в диапазоне 35…55 мм. Коэффициент λ находить из формулы Пуазейля при Rе <
320 руб.
Экономика труда. Зачет. Вариант №3
klimodi
: 31 мая 2015
Вариант 3.
1) Как называется способ объединения трудовых усилий индивидов для достижения конечного результата?
а) кооперация труда b) разделение труда
2) Разница числа рождённых и умерших показывает величину:
а) естественного прироста населения b) механического прироста населения с) трудоспособного населения
3) Охарактеризуйте реакцию валового национального продукта (ВНП) на повышение уровня безработицы согласно закону Оукена:
превышение уровня безработицы на 1 % над уровнем естественной безр
150 руб.
Лабораторная работа №3. Вариант 02. Работа с массивами данных.
Антон133
: 29 января 2017
Цель работы:
Научиться обрабатывать массивы данных.
Задание:
Найти количество отрицательных чисел в массиве чисел и занести его в DX.
100 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 3.9 Вариант б
Z24
: 6 октября 2025
Определить равнодействующую давления масла на цилиндрическую стенку резервуара АВ (рис. 3.9), линию действия, угол наклона силы и глубину погружения центра давления (hDравн), если глубина наполнения Н; радиус цилиндрической части r; секторный угол 90°; длина образующей цилиндрической поверхности L. Плотность масла ρмасл=860 кг/м³.
300 руб.