Контрольная работапо дисциплине "Волоконно-оптические системы передачи" (ДВ 1.1) Вариант №18.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1
Рассчитать затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов формата NRZ в волоконно-оптической системе с длиной секции L (км), километрическим затуханием a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5(нм) на уровне половины максимальной мощности излучения. Для указанной длины оптической секции и типа волокна определить ПМД. Данные для задачи приведены в табл.1.1 и 1.2.
Определить мощность оптического излучения в волокне на выходе секции, если на входе подключен оптический генератор с уровнем мощности +5дБм на заданной длине волны λ0. Привести рисунок изменения уровня сигнала от начала волокна (передатчик) к концу волокна (приёмник).
Задача 2
Определить число оптических каналов на каждой из оптических секций мультиплексирования в цепочке, состоящей из 2-х терминальных WDM мультиплексоров и Х (число по варианту табл. 2.1) промежуточных оптических мультиплексоров типа ROADM. Внутри каждой пары оптических мультиплексоров организовано Y (число по варианту табл. 2.2) оптических каналов. Определить по данным приложения и привести характеристики интерфейса одного оптического канала (по варианту табл.2.1).
Задача 3
Определить характеристики многомодового лазера с резонатором Фабри – Перо (FP) и одномодового лазера с распределенной обратной связью (DFB).
Определить число мод в лазере FP, для которых выполняется условие возбуждения в полосе длин волн Dl при длине резонатора L и показателе преломления активного слоя n.
Определить частотный интервал между модами и добротность резонатора на центральной моде lО при коэффициенте отражения R.
Изобразить конструкцию полоскового лазера FP. Изобразить модовый спектр.
Определить частоту и длину волны генерируемой моды в одномодовом лазере DFB для известных значений дифракционной решетки m и длины лазера L. Оценить диапазон перестройки DFB лазера при изменении nэ в пределах ±5%. Изобразить конструкцию лазера DFB. Исходные данные приведены в табл. 3.1-3.4.
Задача 4.1
По данным табл. 4.1 построить зависимость выходной мощности источника оптического излучения от величины электрического тока, протекающего через него. Для заданных (по варианту) тока смещения и амплитуды модулирующих однополярных импульсов (табл. 4.2 и 4.3) определить графически изменение выходной модуляционной мощности Рмакс и Рмин и определить глубину модуляции h. По построенной характеристике указать вид источника (светодиод или лазер?).
Задача 4.2
Для модулятора Маха-Зендера (см. раздел 4.3.3 учебного пособия) рассчитать и построить передаточную (модуляционную) характеристику по варианту согласно табл. 4.4. Выбрать на построенной характеристике напряжение начального смещения с учётом амплитуды и полярности модулирующего сигнала, представленного по варианту в табл.4.5. Показать на рисунке изменение относительной величины оптической мощности при модуляции (пример на рис.4.28). По рисунку определить глубину модуляции.
Задача 5
Построить график зависимости чувствительности фотодетектора от длины волны оптического излучения по данным табл. 5.1. Используя график и данные табл. 5.2 и 5.3 определить величину фототока на выходе p-i-n фотодиода. По графику определить длинноволновую границу чувствительности фотодетектора. Определить материал для изготовления прибора.
Задача 6
Определить полосу пропускания и отношение сигнал/шум для фотоприёмного устройства, содержащего интегрирующий (ИУ) или трансимпедансный (ТИУ) усилитель и фотодетектор (ЛФД или p-i-n).
Задача 7
Определить длину взаимодействия L излучения накачки в рамановском усилителе, при которой коэффициент распределенного усиления G= (по варианту табл.7.1), при соответствующей мощности накачки Pн, площади модового пятна А и рамановском коэффициенте усиления материала g (табл.7.2).
Задача 8.1.
Используя приложения 1 конспекта лекций для оптических интерфейсов аппаратуры SDH, определенных рекомендациями МСЭ-Т G.957 и G.691, определить по варианту (табл.8.1 и 8.2) предельную дальность передачи по двум типам волокон без промежуточных регенератров, но с возможным использованием оптических усилителей и компенсаторов хроматической дисперсии. Также определить минимальное расстояние между оптическим передатчиком и оптическим приёмником заданного интерфейса для исключения перегрузки приёмника.
Задача 8.2
Для заданного количества оптических каналов в ВОСП-WDM и OSNR (табл.8.3) каждого канала определить минимальный допустимый уровень передачи одного канала и максимальный допустимый уровень всех каналов в стекловолокне при использовании на промежуточных станциях Mус – эрбиевых усилителей с усилением A и с коэффициентом шума NF(табл.8.4). Для скоростей передачи цифровых данных в формате NRZ 2,5 Гбит/с и 10 Гбит/с считать шум спонтанной эмиссии нормированным к полосе 0,1нм и равным -58дБ. Построить диаграмму уровней передачи и изменения OSNR в оптическом канале.
Задача 9
Определить число подряд следующих циклических транспортных структур технологии SDH или OTH (по варианту табл.9.1 и 9.2), которые необходимы для переноса заданного числа кадров Ethernet PBT. Определить общее время передачи этих кадров. Изобразить цепочку преобразования этих кадров в соответствующие структуры оптической передачи.
Задача 10
Определить достижимую скорость в системе передачи с заданными по варианту параметрами: полоса частот канала DWDM; диапазон волн для организации связи; число и вид нагрузочных сигналов (SDH, Ethernet); тип волокна и число сердцевин в волокне.
Рассчитать затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов формата NRZ в волоконно-оптической системе с длиной секции L (км), километрическим затуханием a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5(нм) на уровне половины максимальной мощности излучения. Для указанной длины оптической секции и типа волокна определить ПМД. Данные для задачи приведены в табл.1.1 и 1.2.
Определить мощность оптического излучения в волокне на выходе секции, если на входе подключен оптический генератор с уровнем мощности +5дБм на заданной длине волны λ0. Привести рисунок изменения уровня сигнала от начала волокна (передатчик) к концу волокна (приёмник).
Задача 2
Определить число оптических каналов на каждой из оптических секций мультиплексирования в цепочке, состоящей из 2-х терминальных WDM мультиплексоров и Х (число по варианту табл. 2.1) промежуточных оптических мультиплексоров типа ROADM. Внутри каждой пары оптических мультиплексоров организовано Y (число по варианту табл. 2.2) оптических каналов. Определить по данным приложения и привести характеристики интерфейса одного оптического канала (по варианту табл.2.1).
Задача 3
Определить характеристики многомодового лазера с резонатором Фабри – Перо (FP) и одномодового лазера с распределенной обратной связью (DFB).
Определить число мод в лазере FP, для которых выполняется условие возбуждения в полосе длин волн Dl при длине резонатора L и показателе преломления активного слоя n.
Определить частотный интервал между модами и добротность резонатора на центральной моде lО при коэффициенте отражения R.
Изобразить конструкцию полоскового лазера FP. Изобразить модовый спектр.
Определить частоту и длину волны генерируемой моды в одномодовом лазере DFB для известных значений дифракционной решетки m и длины лазера L. Оценить диапазон перестройки DFB лазера при изменении nэ в пределах ±5%. Изобразить конструкцию лазера DFB. Исходные данные приведены в табл. 3.1-3.4.
Задача 4.1
По данным табл. 4.1 построить зависимость выходной мощности источника оптического излучения от величины электрического тока, протекающего через него. Для заданных (по варианту) тока смещения и амплитуды модулирующих однополярных импульсов (табл. 4.2 и 4.3) определить графически изменение выходной модуляционной мощности Рмакс и Рмин и определить глубину модуляции h. По построенной характеристике указать вид источника (светодиод или лазер?).
Задача 4.2
Для модулятора Маха-Зендера (см. раздел 4.3.3 учебного пособия) рассчитать и построить передаточную (модуляционную) характеристику по варианту согласно табл. 4.4. Выбрать на построенной характеристике напряжение начального смещения с учётом амплитуды и полярности модулирующего сигнала, представленного по варианту в табл.4.5. Показать на рисунке изменение относительной величины оптической мощности при модуляции (пример на рис.4.28). По рисунку определить глубину модуляции.
Задача 5
Построить график зависимости чувствительности фотодетектора от длины волны оптического излучения по данным табл. 5.1. Используя график и данные табл. 5.2 и 5.3 определить величину фототока на выходе p-i-n фотодиода. По графику определить длинноволновую границу чувствительности фотодетектора. Определить материал для изготовления прибора.
Задача 6
Определить полосу пропускания и отношение сигнал/шум для фотоприёмного устройства, содержащего интегрирующий (ИУ) или трансимпедансный (ТИУ) усилитель и фотодетектор (ЛФД или p-i-n).
Задача 7
Определить длину взаимодействия L излучения накачки в рамановском усилителе, при которой коэффициент распределенного усиления G= (по варианту табл.7.1), при соответствующей мощности накачки Pн, площади модового пятна А и рамановском коэффициенте усиления материала g (табл.7.2).
Задача 8.1.
Используя приложения 1 конспекта лекций для оптических интерфейсов аппаратуры SDH, определенных рекомендациями МСЭ-Т G.957 и G.691, определить по варианту (табл.8.1 и 8.2) предельную дальность передачи по двум типам волокон без промежуточных регенератров, но с возможным использованием оптических усилителей и компенсаторов хроматической дисперсии. Также определить минимальное расстояние между оптическим передатчиком и оптическим приёмником заданного интерфейса для исключения перегрузки приёмника.
Задача 8.2
Для заданного количества оптических каналов в ВОСП-WDM и OSNR (табл.8.3) каждого канала определить минимальный допустимый уровень передачи одного канала и максимальный допустимый уровень всех каналов в стекловолокне при использовании на промежуточных станциях Mус – эрбиевых усилителей с усилением A и с коэффициентом шума NF(табл.8.4). Для скоростей передачи цифровых данных в формате NRZ 2,5 Гбит/с и 10 Гбит/с считать шум спонтанной эмиссии нормированным к полосе 0,1нм и равным -58дБ. Построить диаграмму уровней передачи и изменения OSNR в оптическом канале.
Задача 9
Определить число подряд следующих циклических транспортных структур технологии SDH или OTH (по варианту табл.9.1 и 9.2), которые необходимы для переноса заданного числа кадров Ethernet PBT. Определить общее время передачи этих кадров. Изобразить цепочку преобразования этих кадров в соответствующие структуры оптической передачи.
Задача 10
Определить достижимую скорость в системе передачи с заданными по варианту параметрами: полоса частот канала DWDM; диапазон волн для организации связи; число и вид нагрузочных сигналов (SDH, Ethernet); тип волокна и число сердцевин в волокне.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Волоконно-оптические системы передачи
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: 08.12.2020
Рецензия:Уважаемый ...., Фокин В.Г.
Оценена Ваша работа по предмету: Волоконно-оптические системы передачи
Вид работы: Контрольная работа
Оценка: Зачет
Дата оценки: 08.12.2020
Рецензия:Уважаемый ...., Фокин В.Г.
Похожие материалы
Волоконно-оптические системы передачи
Evgen22
: 8 декабря 2023
Зачет ВОСП 2020 год 1 семестр магистратура
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Волоконно-оптические системы передачи (часть 1) (ДВ 2.2)
Вид работы: Зачет
Оценка:Зачет
Дата оценки: 27.11.2020
360 руб.
Волоконно-оптические системы передачи
Evgen22
: 8 декабря 2023
• 1. Что называют оптическим трансивером?
Оптические трансиверы представляют собой простые устройства для соединения между собой по волоконно-оптическим линиям связи сетевых устройств: абонентских терминалов; коммутаторов-маршрутизаторов; цифровых мультиплексоров различных технологий (PDH, SDH, Ethernet и др.). Трансиверы преобразуют электрические сигналы аппаратуры в оптические сигналы волоконных линий связи на передаче и выполняют обратные функции преобразования сигналов на приеме, т. е. оптич
250 руб.
Волоконно-оптические системы передачи
artemka22fso
: 14 сентября 2021
Исходные данные:
Таблица 1.1 - Длина оптической секции
Параметр Предпоследняя цифра номера пароля
1
Длина оптической секции, км 99
Таблица 1.2 - Параметры волокна
Параметр Последняя цифра номера пароля
0
Тип волокна SF
Коэфф. затухания α, дБ/км 0,34
Длина волны λ0, мкм 1,31
Спектральная линия ∆λ0,5, нм 0,05
Коэфф. хроматической дисперсии σхр, пс/(нм•км) 3,5
SF, Standard Fiber – стандартное одномодовое ступенчатое волокно, коэффициент ПМД σпмд=0,5 пс/√км;
1000 руб.
Волоконно-оптические системы передачи
Dirol340
: 10 сентября 2020
Задача 1
Рассчитать затухание, дисперсию, полосу пропускания и максимальную скорость передачи двоичных импульсов формата NRZ в волоконно-оптической системе с длиной секции L (км), километрическим затуханием a (дБ/км) на длине волны излучения передатчика l0 (мкм), ширине спектра излучения Dl0,5(нм) на уровне половины максимальной мощности излучения. Для указанной длины оптической секции и типа волокна определить ПМД. Данные для задачи приведены в табл.1.1 и 1.2. Определить мощность оптического из
320 руб.
Волоконно-оптические системы передачи
Dirol340
: 10 сентября 2020
1.ОСНОВЫ ПОСТРОЕНИЯ ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ.
Вопросы:
1. Что принято понимать под волоконно-оптической системой передачи?
Волоконно-оптическая система, состоящая из пассивных
2. Какой диапазон электромагнитных волн (частот) получил наибольшее применение в оптических системах передачи?
3. Какой физический смысл у показателя преломления?
4. Какие характеристики имеют стекловолокна?
5. Какие оптические диапазоны определены для улучшенных волокон стандарта G.652?
6.
300 руб.
Волоконно-оптические системы передачи
Dirol340
: 10 сентября 2020
1. Источники оптического излучения. Лазеры. Определение лазера. Уравнение Эйнштейна и его физический смысл. Резонатор Фабри-Перо и его характеристики.
Источник оптического излучения, излучатель – прибор,
преобразующий электрическую энергию возбуждения в энергию
оптического излучения заданного спектрального
2. Способы построения одноволновых линейных трактов. Определение длины регенерационного участка одноволновой ВОСП.
Одноволновой линейный тракт может быть
3. Задача
Определить мощности 2-х о
200 руб.
Волоконно-оптические системы передачи
Иннокентий
: 23 февраля 2020
ОТВЕТЫ НА ВОПРОСЫ ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО СПЕЦИАЛЬНОСТИ 201000
Волоконно-оптические системы передачи
1. Характеристика диапазона электромагнитных волн для оптической связи.
2. Характеристика физических сред для передачи оптических сигналов.
3. Характеристики материалов для изготовления источников и приемников оптического излучения и волноводов.
4. Структурная схема оптической системы передачи.
5. Мультиплексирование асинхронное АТМ.
6. Мультиплексирование OTH.
7. Мультиплексирование Ethernet
300 руб.
'Волоконно-оптические системы передачи
bambucha
: 13 мая 2017
Лабораторная работа №1
Излучатели ВОСП.
Цель лабораторной работы: изучение конструкций, знакомство с принципом действия и исследование характеристик излучателей ВОСП.
100 руб.
Другие работы
Планирование создания ночного клуба
Qiwir
: 22 ноября 2013
Содержание
1. Резюме
2. Цели и задачи
3.Анализ идеи
3.1. Основные направления и виды деятельности
3.2. Характеристика сферы деятельности
4. Услуги
4.1. Описание услуг
4.2. Отличительные качества и уникальность
4.3. Технология и квалификация необходимые в бизнесе
4.4. Будущий потенциал
4.5. Анализ рынка
4.6. Покупатели
4.7. Конкуренты
4.8. Состав клиентуры
4.9. Влияние конкуренции
7. План маркетинга
7.1. Маркетинговая расстановка
7.2. Ценообразование
7.3. Рекл
5 руб.
Организация восстановления деталей в «Янаульской МТС» с разработкой устройства для подачи порошка при напылении
Рики-Тики-Та
: 20 декабря 2015
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ…………………………………………………………………..
1 АНАЛИЗ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ МУП «ЯНАУЛЬСКОЙ МТС»…………………………………………………………………
1.1 Общая характеристика предприятия……………………………………
1.2 Организация и технология ремонта машин…………………………….
1.2.1 Характеристика предприятия…………………………………….
1.2.2 Характеристика мастерской……………………………………...
1.2.3 Технология ремонта машин в ремонтной мастерской………….
1.2.4 Организация технического контроля……………………………
1.2.5 Состояние охраны труда и противопожарные мероприя
825 руб.
Обнаружение радиоактивных выбросов
alfFRED
: 3 сентября 2013
Пассивные методы дистанционного обнаружения радиоактивных выбросов в атмосферу, а также экологического мониторинга деятельности ядерно-перерабатывающих предприятий представляют не меньший интерес, чем активные методы. Однако имеют перед ними определённые преимущества, в частности, они не приводят к дополнительному электромагнитному загрязнению среды, менее энергоёмки и более просты при их реализации на практике, поскольку для них не требуется предварительная информация о местонахождении источник
5 руб.
РАСЧЕТ РАЗРАБОТАННЫХ УЗЛОВ установки электроцентробежного насоса УЭЦН клапана обратного КО-89 и компенсатора МК-54. Оборудование для добычи и подготовки нефти и газа
lesha.nakonechnyy.92@mail.ru
: 19 мая 2020
Расчетная часть-РАСЧЕТ РАЗРАБОТАННЫХ УЗЛОВ установки электроцентробежного насоса УЭЦН клапана обратного КО-89 и компенсатора МК-54-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
5 РАСЧЕТ РАЗРАБОТАННЫХ УЗЛОВ УЭЦН 59
5.1 Гидравлический расчет обратного клапана 59
5.2 Расчет витков резьб обратного клапана 67
299 руб.