Лабораторная работа № 1 по дисциплине «Дискретная математика». Вариант №12
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Изучить основные понятия, определения и терминологию теории графов, классы графов, способы задания графа, простейшие операции на гра-фах, числовые характеристики графа и способы их вычисления.
Задания на лабораторную работу
Задание 1. По матрицам (рис. 2 и 3) построить диаграммы графов, определив предварительно вид данных матриц.
Задание 2. Методами поиска «в глубину» и «в ширину» найти наибольший минимальный маршрут между вершинами графа (рис. 1).
Задание 3. Для каждой пары вершин графа (рис. 1) аналитическим способом вычислить количество маршрутов длины, равной 4, и выделить те пары вершин, для которых их количество ≥ 3, но не более 10. Выписать эти маршруты для какой-либо из выделенных пар. В описании маршрутов указывать вершины и ребра, входящие в него.
Задание 4. Построить матрицу метрики графа (рис. 1).
Задание 5. С помощью алгоритма Магу – Вейсмана выполнить пра-вильную раскраску вершин графа с минимальным количеством цветов.
Задание 6. Определить число вершинного покрытия графа (рис. 1).
Задание 7. Определить, содержит ли граф (рис. 1) эйлерову цепь или эйлеров цикл.
Ответ обосновать.
Варианты исходных данных для выполнения заданий 1–7 лаборатор-ной работы No 1 представлены в приложении Б.
Задание 8. Аналитическим способом определить число компонент связности графа.
Задания на лабораторную работу
Задание 1. По матрицам (рис. 2 и 3) построить диаграммы графов, определив предварительно вид данных матриц.
Задание 2. Методами поиска «в глубину» и «в ширину» найти наибольший минимальный маршрут между вершинами графа (рис. 1).
Задание 3. Для каждой пары вершин графа (рис. 1) аналитическим способом вычислить количество маршрутов длины, равной 4, и выделить те пары вершин, для которых их количество ≥ 3, но не более 10. Выписать эти маршруты для какой-либо из выделенных пар. В описании маршрутов указывать вершины и ребра, входящие в него.
Задание 4. Построить матрицу метрики графа (рис. 1).
Задание 5. С помощью алгоритма Магу – Вейсмана выполнить пра-вильную раскраску вершин графа с минимальным количеством цветов.
Задание 6. Определить число вершинного покрытия графа (рис. 1).
Задание 7. Определить, содержит ли граф (рис. 1) эйлерову цепь или эйлеров цикл.
Ответ обосновать.
Варианты исходных данных для выполнения заданий 1–7 лаборатор-ной работы No 1 представлены в приложении Б.
Задание 8. Аналитическим способом определить число компонент связности графа.
Похожие материалы
Лабораторная работа №1. По дисциплине: Дискретная математика
Discursus
: 15 июня 2017
Задание
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , ) с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
143 руб.
Лабораторная работа № 1 по дисциплине: Дискретная математика
IT-STUDHELP
: 29 января 2017
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множес
48 руб.
Лабораторная работа №1 по дисциплине "Дискретная математика. СибГУТИ"
Loviska
: 26 января 2015
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива. Работа программы должна происходить следующим образом...
100 руб.
Лабораторная работа № 1 по дисциплине "Дискретная математика". Вариант №1
kanchert
: 31 марта 2014
Тема: Множества и операции над ними.
Задание.
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (, , , \) с помощью алгоритма типа слияния. Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается требуемая операция (пос
Лабораторная работа 1 По дисциплине: Дискретная математика Вариант 4
Nitros
: 28 июня 2025
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить е
300 руб.
Лабораторная работа 1 по дисциплине: Дискретная математика. Вариант №20
IT-STUDHELP
: 23 ноября 2022
Лабораторная работа No 1
по дисциплине
«Дискретная математика»
Вариант 20
=======================================
Задание 1
По матрицам (рис. 2; 3) построить диаграммы графов, определив предварительно вид данных матриц.
Задание 2
Методами поиска «в глубину» и «в ширину» выделить в графе между его вершинами наибольший минимальный маршрут.
Задание 3
Для каждой пары вершин графа (рис. 1) аналитическим способом вычислить количество маршрутов длины, равной 4, и выделить те пары вершин, для котор
450 руб.
Лабораторная работа №1 по дисциплине: Дискретная математика. Вариант №34
IT-STUDHELP
: 30 декабря 2021
Задание 1
По матрицам (рис. 2; 3) построить диаграммы графов, определив предва-рительно вид данных матриц.
Задание 2
Методами поиска «в глубину» и «в ширину» найти в графе наибольший минимальный маршрут между вершинами графа.
Задание 3
Для каждой пары вершин графа (рис. 1) аналитическим способом вычис-лить количество маршрутов длины, равной 4, и выделить те пары вершин, для которых их количество ≥ 3, но не более 10. Выписать эти маршруты для какой-либо из выделенных пар. В описании маршрутов
400 руб.
Лабораторная работа №1 по дисциплине: Дискретная математика. Вариант №24
IT-STUDHELP
: 6 ноября 2019
Цель лабораторной работы
Изучить основные понятия, определения и терминологию теории графов, классы графов, способы задания графа, простейшие операции на графах, числовые характеристики графа и способы их вычисления.
Задание 1. По матрицам (рис. 2 и 3) построить диаграммы графов, определив предварительно вид данных матриц.
Задание 2. Методами поиска «в глубину» и «в ширину» найти наибольший минимальный маршрут между вершинами графа (рис. 1).
Задание 3. Для каждой пары вершин графа (рис. 1)
400 руб.
Другие работы
Контрольная работа по дисциплине: Функциональное и логическое программирование. Вариант №8
SibGOODy
: 27 августа 2018
Задание
Вариант задачи выбирается по последней цифре пароля. Программы должны быть написаны на языке двух языках: Лисп и Пролог. В программе на Прологе исходные данные должны вводиться с клавиатуры, цель - внутренняя.
Вариант 8:
Сформируйте новый список, включающий в себя те элементы первого списка, которые не входят во второй (pазность множеств).
Например: На Лиспе для списков (1 2 3 5) и (6 4 1 8 3) результатом будет список (2 5).
400 руб.
Контрольная работа по дисциплине: Защита информации. Вариант №2
IT-STUDHELP
: 17 мая 2023
Контрольная работа
Вариант №02
Тема: Доказательства с нулевым знанием
Задание:
Выполнить компьютерную реализацию протокола «Задачи о нахождении гамильтонова цикла в графе», используя пример 6.2 (стр. 124 лекций). Номер варианта Z равен последней цифре номера пароля.
Параметры, выбираемые по варианту Z:
1) Случайную нумерацию вершин, используемую в алгоритме (изначально в примере она равна 7 4 5 3 1 2 8 6), необходимо изменить по формуле ((a+Z)mod 9), где a – это цифра исходной последовательност
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
Вариант №4
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями (см. скрин)
3. Вычислить криволинейный интеграл по координатам
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка (см. скрин)
5. Решить задачу Коши (см. скрин)
450 руб.
По двум видам модели построить третий. Упражнение №40. Вариант №18
bublegum
: 15 февраля 2021
Упражнение 40 Вариант 18
По двум видам модели построить третий. Выполнить необходимые разрезы. Поставить размеры.
3d модель и чертеж (все на скриншотах изображено) выполнены в компасе 3D v13, возможно открыть в 14,15,16,17,18,19 и выше версиях компаса.
Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
100 руб.