Алгебра и геометрия. Контрольная работа №1. Вариант №5. Семестр №1
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Контрольная работаNo1, вариант No5, семестр No1
1. Решить систему уравнений методом Крамера и методом Гаусса {-2x+y-z=3 -x-2y-z=8 3x-5y+z=4
2. Для данной матрицы найти обратную матрицу A=((4-8-5 -4 7 -1 -3 5 1))
3. Даны векторы a ̄_1={2;1;2},( a) ̄_2={-3;2;4},( a) ̄_3={-2;2;4}.
Найти:
a) угол между векторами a ̄_1 и a ̄_2:
b) Проекцию вектора a ̅_1 на вектор a ̅_2:
c) векторное произведение a ̅_1*a ̅_2:
d) площадь треугольника, построенного векторами a ̅_1 и a ̅_2:
4. Даны координаты вершин треугольника A(8,-4);B(6,2);C(0,0)
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин пирамиды A(5;1;3);B(0;-2;4);C(1;1;-3);D(1;2;-1)
Найти:
a) уравнение плоскости ABC;
b) уравнение прямой AD;
c) угол между плоскостью ABC и прямой AD;
d) объём пирамиды АВСD.
1. Решить систему уравнений методом Крамера и методом Гаусса {-2x+y-z=3 -x-2y-z=8 3x-5y+z=4
2. Для данной матрицы найти обратную матрицу A=((4-8-5 -4 7 -1 -3 5 1))
3. Даны векторы a ̄_1={2;1;2},( a) ̄_2={-3;2;4},( a) ̄_3={-2;2;4}.
Найти:
a) угол между векторами a ̄_1 и a ̄_2:
b) Проекцию вектора a ̅_1 на вектор a ̅_2:
c) векторное произведение a ̅_1*a ̅_2:
d) площадь треугольника, построенного векторами a ̅_1 и a ̅_2:
4. Даны координаты вершин треугольника A(8,-4);B(6,2);C(0,0)
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны координаты вершин пирамиды A(5;1;3);B(0;-2;4);C(1;1;-3);D(1;2;-1)
Найти:
a) уравнение плоскости ABC;
b) уравнение прямой AD;
c) угол между плоскостью ABC и прямой AD;
d) объём пирамиды АВСD.
Дополнительная информация
Уважаемый студент дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Контрольная работа 1
Оценка: Зачет
Дата оценки: 05.05.2021
Замечаний нет
Захарова Татьяна Эрнестовна
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Контрольная работа 1
Оценка: Зачет
Дата оценки: 05.05.2021
Замечаний нет
Захарова Татьяна Эрнестовна
Похожие материалы
Алгебра и геометрия. Контрольная работа №1. Семестр №1. ВАРИАНТ №5
sashab
: 14 июля 2018
Задание 1. Решить систему уравнений методом Крамера и методом Гаусса
Задание 2. Для данной матрицы найти обратную матрицу.
Задание 3. Даны векторы ̄(a_1 ) = {2;1;2}, ̄(a_2 ) = {-3;2;4}, ̄(a_3 ) = {-2;2;4}.
Найти:
а) угол между векторами (a_1 ) ̅ и (a_2 ) ̅;
b) проекцию вектора (a_1 ) ̅ на вектор (a_2 ) ̅;
c) векторное произведение (a_1 ) ̅ × (a_2 ) ̅;
d) площадь треугольника, построенного на векторах (a_1 ) ̅, (a_2 ) ̅.
Задание 4. Даны координаты вершин треугольника
А(8, -4); В(6,
97 руб.
Алгебра и Геометрия Контрольная работа №1 семестр-1 вариант-5
DaemonMag
: 5 ноября 2009
Алгебра и Геометрия Контрольная работа №1 семестр-1 вариант-5
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 4; 2; 5), А2 ( 0; 7; 2), А3 ( 0; 2; 7), А4 ( 1; 5; 0)
50 руб.
Алгебра и геометрия. Контрольная работа № 1. Семестр 1.
mikkikikki
: 7 мая 2012
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
100 руб.
Алгебра и геометрия, контрольная работа 1 семестр 1 вариант
sibstud13
: 2 июня 2023
Задание 1. Решить систему линейных уравнений методом Крамера и методом Гаусса
Задание 2. Для данной матрицы найти обратную матрицу
Задание 3. Даны векторы
Найти:
a) угол между векторами
b) проекцию вектора на вектор;
c) векторное произведение;
d) площадь треугольника, построенного на векторах.
Задание 4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
Задание 5
100 руб.
Алгебра и геометрия. Контрольная работа №1. Семестр №1. Вариант №3
nsksev
: 24 марта 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
3x+2y+z=5
2x+3y+z=1
2x+y+3z=11
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
Варианты:
2.3. А1 ( 0; 2; -3), А2 ( 2; 0; 1), А3 ( 4; 0; 3), А4 ( 2; 6; 5).
90 руб.
Алгебра и геометрия. Контрольная работа № 1.семестр 1. Вариант №9.
58197
: 9 февраля 2012
Задача 1.
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2.
Даны координаты вершин пирамиды А1А2А3А4.
А1 (1; 8; 2), А2 (5; 2; 6), А3 (5; 7; 4), А4 (4; 10; 9).
Найти:
1.длину ребра А1А2;
2.угол между ребрами А1А2 и А1А4;
3.площадь грани А1А2А3;
4.уравнение плоскости А1А2А3.
5.объём пирамиды А1А2А3А4.
15 руб.
Алгебра и геометрия. Контрольная работа №1. Семестр №4
Arsikk
: 2 апреля 2014
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия***
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.11.2013
Рецензия:Уважаемый М.П.Е., Ваша работа зачтена.
Агульник Владимир Игоревич
100 руб.
Контрольная работа. Семестр №1. Вариант №3. Алгебра и геометрия
Илья45
: 7 января 2018
Вариант №3
1. Решить систему уравнений методом Крамера и методом Гаусса.
2. Для данной матрицы найти обратную матрицу.
3. Даны векторы .
4. Даны координаты вершин треугольника A(1,–3); B(3,–1); C(–1,3)
5. Даны координаты вершин пирамиды
А(2;-2;1); В(0;-2;-4); С(-5;1;0); D(1;4;1)
50 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.