Теория вероятности и математическая статистика (2-я часть) . Вариант №3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Лекция 1 Лекция 2 Лекция 3 Лекция 4
Вариант 3 7, 12, 28 3, 4 3 3
Задача 1 (соответствует номеру 7)
7. В партии из 20 изделий 4 бракованных. Найти вероятность того, что в выборке из 5 изделий не более одного бракованного.
Задача 2 (соответствует номеру 12)
12. Двое шахматистов равной силы играют 4 партии. Найти вероятность, что победил первый, если известно, что каждый выиграл хоть один раз.
Задача 3 (соответствует номеру 28)
28. Фирма нарушает закон с вероятностью 0,25. Аудитор обнаруживает нарушения с вероятностью 0,75. Проведенная им проверка не выявила нарушений. Найти вероятность, что они на самом деле есть.
Задача 4 (соответствует номеру 3) на скриншоте
Задача 5 (соответствует номеру 4)на скриншоте
Задача 6 (соответствует номеру 3)
3. Игральную кость бросают 125 раз. Найти вероятность того, что относительная частота появления шестерок отклонится от его вероятности не более чем на 0,1.
Задача 7 (соответствует номеру 3) на скриншоте
Вариант 3 7, 12, 28 3, 4 3 3
Задача 1 (соответствует номеру 7)
7. В партии из 20 изделий 4 бракованных. Найти вероятность того, что в выборке из 5 изделий не более одного бракованного.
Задача 2 (соответствует номеру 12)
12. Двое шахматистов равной силы играют 4 партии. Найти вероятность, что победил первый, если известно, что каждый выиграл хоть один раз.
Задача 3 (соответствует номеру 28)
28. Фирма нарушает закон с вероятностью 0,25. Аудитор обнаруживает нарушения с вероятностью 0,75. Проведенная им проверка не выявила нарушений. Найти вероятность, что они на самом деле есть.
Задача 4 (соответствует номеру 3) на скриншоте
Задача 5 (соответствует номеру 4)на скриншоте
Задача 6 (соответствует номеру 3)
3. Игральную кость бросают 125 раз. Найти вероятность того, что относительная частота появления шестерок отклонится от его вероятности не более чем на 0,1.
Задача 7 (соответствует номеру 3) на скриншоте
Дополнительная информация
Оценка: Зачет
Дата оценки: 18.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 18.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Теория вероятностей и математическая статистика (часть 2-я). Вариант №3
artyomemelinnn
: 18 декабря 2021
Лекция 1 3
Задача 1 (соответствует номеру 7) 3
Задача 2 (соответствует номеру 12) 4
Задача 3 (соответствует номеру 28) 4
Лекция 2 6
Задача 4 (соответствует номеру 3) 6
Задача 5 (соответствует номеру 4) 6
Лекция 3 8
Задача 6 (соответствует номеру 3) 8
Лекция 4 9
Задача 7 (соответствует номеру 3) 9
150 руб.
Теория вероятностей и математическая статистика (часть 2). Вариант №3
Marina4
: 31 октября 2021
Вариант 3
Лекция 1 Лекция 2 Лекция 3 Лекция 4
7, 12, 28 3, 4 3 3
Лекция 1
Задача 1 (соответствует номеру 7)
7. В партии из 20 изделий 4 бракованных. Найти вероятность того, что в выборке из 5 изделий не более одного бракованного.
Задача 2 (соответствует номеру 12)
12. Двое шахматистов равной силы играют 4 партии. Найти вероятность, что победил первый, если известно, что каждый выиграл хоть один раз.
Задача 3 (соответствует номеру 28)
28. Фирма нарушает закон с вероятностью 0,25. Ауди
250 руб.
Теория вероятностей и математическая статистика ( часть 2) вариант:3
5234
: 9 августа 2019
Билет №3.
Теоретический вопрос. Схема Бернулли и Формула Бернулли.
Практическое задание. Оцените распределение случайной величины по выборке:
1 1,138
2 0,317
3 -0,048
4 0,062
5 -6,102
6 0,021
7 0,643
8 -8,326
9 -0,431
10 0,698
- выдвинете обоснованную гипотезу о принадлежности с.в. к некоторому распределению
- оцените параметры выбранного распределения методом моментов или методом максимального правдоподобия, объясните выбор метода
- проверьте выдвинутую гипотезу о распределении с.в. любым и
220 руб.
«Теория вероятностей и математическая статистика». Вариант №3
LiVolk
: 20 января 2022
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова
ФУРАЖ?
Задание 2. Основные теоремы
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной с
200 руб.
Теория вероятностей и математическая статистика. Вариант №3
IT-STUDHELP
: 18 ноября 2021
Задача 1
Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?
Задача 2
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
В типографии имеется печатных машин. Для каждой м
500 руб.
Теория вероятностей и математическая статистика. Вариант №3
89370803526
: 26 июня 2020
Вариант No 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
SibGUTI2
: 7 апреля 2020
Задание 1. Комбинаторика
Вариант 3. Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы
Вариант 3. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01 для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
CrashOv
: 20 февраля 2020
Вариант №03
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы.
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
350 руб.
Другие работы
Разработка Пинейского месторождения строительного камня
elementpio
: 8 декабря 2012
Введение
Общая характеристика района и месторождения
Геологическое строение месторождения
Условия залегания полезного ископаемого
Описание комплекса пород, слагающих месторождение
Качество минерального сырья
Геологические запасы месторождения
Подсчет балансовых запасов
Подсчет промышленных запасов
Выбор способа разработки
Основные положения проекта
Режим работы карьера
Углы откосов бортов
Производственная мощность карьера
Срок службы
Вскрытие месторождения
Выбор способа и схема вскрытия
Выбор ме
385 руб.
Страхование несчастных случаев. Экологическое страхование владельцев источников повышенной опасности
Aronitue9
: 5 ноября 2012
1. Страхованиеот несчастных случаев.
1.1. Введение................................................................................................................3
1.2. Обязательное страхование.................................................................................. 3
1.3. Несчастные случаи...............................................................................................4
1.4. Страховые случаи..............................................................................
55 руб.
Гидравлика гидравлические машины и гидроприводы Задача 15 Вариант 5
Z24
: 18 ноября 2025
Из большого резервуара А, в котором поддерживается постоянный уровень жидкости, по трубопроводу, состоящему из трех труб, длина которых l1 и l2, диаметры d1 и d2, а эквивалентная шероховатость Δэ, жидкость Ж при температуре 20 ºС течет в открытый резервуар Б. Разность уровней жидкости в резервуарах равна Н.
Определить расход Q жидкости, протекающей в резервуар Б. В расчетах принять, что местные потери напора составляют 20% от потери по длине.
320 руб.
Рекламная деятельность предприятия
evelin
: 11 октября 2013
Содержание
Введение
1. Видео реклама: ее характеристики и особенности
2. Методы определения бюджета рекламы
3. Печатная реклама, преимущества и недостатки
Заключение
Список использованной литературы
Введение
О рекламе упоминается в самых первых письменных источниках. Археологи, проводившие раскопки в странах Средиземноморье, нашли надписи, рассказывающие о различных событиях и рекламирующие изделия древних мастеров. Римляне писали на стенах объявления о гладиаторских боях, а финикийцы ра
10 руб.