Вычислительная математика. Вариант №8
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплоты Q=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.1.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значение x и соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xi и соответствующее ему значение yi);
количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант 8
{(y^'=-sin( 5x+y)+y/(2+3x)@y(0)=k)
где k – наименьший положительный корень уравнения 2x^4+8x^3+8x^2-3=0.
Вопросы для защиты: 4, 8, 9, 12.
4. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.0001?
8. В чем заключается метод двойного пересчета?
9. В чем заключается смысл линейной интерполяции?
12. Какой линией соединяются узлы интегрирования в методе трапеций?
деления пополам (если Ваша фамилия начинается на гласную букву)
Симпсона (если Ваше имя начинается на гласную букву)
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием.
Найти аналитически интервал изоляции положительного корня заданного нелинейного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси.
Написать программу, которая:
находит k – наименьший положительный корень заданного нелинейного уравнения из найденного в пункте 1 интервала изоляции с точностью 0.001 методом: деления пополам (если Ваша фамилия начинается на гласную букву), хорд (если Ваша фамилия начинается на согласную букву);
решает дифференциальное уравнение методом Рунге-Кутта четвертого порядка с точностью 10-4 на интервале [0;2] (для достижения заданной точности использовать метод двойного пересчета, начальный шаг решения взять равным 1);
с помощью линейной интерполяции по найденному в пункте б) решению дифференциального уравнения находит приближенные значения функции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20;
определяет количество теплоты Q=∫_0^2▒〖y^2 dt〗, выделяющегося на единичном сопротивлении за 2 единицы времени, методом: Симпсона (если Ваше имя начинается на гласную букву), трапеций (если Ваше имя начинается на согласную букву) с шагом 0.1.
Программа должна выводить:
найденное приближенное значение k и количество итераций, которое потребовалось для достижения заданной точности;
решение дифференциального уравнения на интервале [0;2] с заданной точностью (выводить следует в 2 столбика: значение x и соответствующее ему значение y);
результаты линейной интерполяции в точках x_i=0,0.1,0.2,...,1.9,2,i=0,1,...,20 (выводить следует в 2 столбика: значение xi и соответствующее ему значение yi);
количество теплоты Q.
4. Ответить на вопросы для защиты курсовой работы.
Вариант 8
{(y^'=-sin( 5x+y)+y/(2+3x)@y(0)=k)
где k – наименьший положительный корень уравнения 2x^4+8x^3+8x^2-3=0.
Вопросы для защиты: 4, 8, 9, 12.
4. В каком виде следует выводить приближенные числа, если они найдены с точностью 0.0001?
8. В чем заключается метод двойного пересчета?
9. В чем заключается смысл линейной интерполяции?
12. Какой линией соединяются узлы интегрирования в методе трапеций?
деления пополам (если Ваша фамилия начинается на гласную букву)
Симпсона (если Ваше имя начинается на гласную букву)
Дополнительная информация
Оценка: Отлично
Дата оценки: 24.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 24.11.2021
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Вычислительная математика. Вариант №8
5234
: 3 марта 2020
Решение нелинейных уравнений
Задание на контрольную работу
1. Найти аналитически интервалы изоляции действительных корней заданного уравнения, вычислив производную левой части уравнения и составив таблицу знаков левой части уравнения на всей числовой оси. Убедитесь, что вторая производная сохраняет знаки на каждом интервале изоляции, в противном случае уменьшите длину интервала.
2. Написать программу нахождения наименьшего действительного корня нелинейного уравнения с точностью 0.0001 тремя ме
1250 руб.
Курсовая работа "Вычислительная математика". Вариант №8
Daniil2001
: 3 января 2023
Курсовая работа
Отлично Уважаемый -----, замечаний нет. Галкина Марина Юрьевна
80 руб.
Вычислительная математика. Линейная интерполяция. Вариант №8
5234
: 27 апреля 2020
Линейная интерполяция
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
270 руб.
Вычислительная математика Лабораторная N2 вариант 8
sunman
: 30 декабря 2020
буква согласная
1. Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
2. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
3. Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
4. Вывести количество итера
300 руб.
Вычислительная математика. Курсовая работа. Вариант №8.
nik200511
: 13 июня 2017
Задание
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения
93 руб.
Вычислительная математика. Курсовая работа. Вариант №8
rt
: 19 октября 2014
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием (см. рис.1)
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле (см.рис.2)
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10^-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для
200 руб.
Курсовая работа по вычислительной математике, вариант 8
Ульяна2
: 17 октября 2014
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета).
Интеграл вычислить по формуле Симпсона с шагом 0.1.
Для нахождения зна
200 руб.
Вычислительная математика. Курсовой проект. Вариант №8
Efimenko250793
: 4 февраля 2014
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
400 руб.
Другие работы
Контрольная работа по дисциплине: Нормирование точности. Вариант № 16
Рики-Тики-Та
: 30 июня 2012
Задача №1 Определить и указать на схеме значение предельных отклонений.
Задача №2 Выбираем размеры призматической шпонки.
Задача №3 Принимаем способ центрирования шлицевого соединения.
55 руб.
Лекции и задания по экономике недвижимости
aspro
: 3 января 2009
Экономика недвижимости представляет собой систему отношений, возникающих в процессе операций с недвижимым имуществом, под которым понимается участок территории с принадлежащими ему природ-ными ресурсами, а также здания и сооружения.
Для эффективного ведения бизнеса предприниматель должен хорошо разбираться в вопросах экономики недвижимости.
Предметом экономики недвижимости как научной дисциплины является изучение теории и практики проведения операций с недвижимостью, а также изучение орг
Экология. Контрольная работа (7-й семестр. 14-й Вар)
SergeyVL
: 14 октября 2015
14. Каковы экологические проблемы ГЭС?
34. Какие ограничения препятствуют переходу к устойчивому развитию?
Задача 1.
На поле с травяным покровом расположена радиолокационная станция, имеющая следующие характеристики излучения: импульсная мощность излучения Ри кВт, длительность импульса τ, мкс, частота повторения импульсов F, Гц. Коэффициент усиления вращающейся антенны G. На расстоянии S, м, от этой станции находятся дачные участки. Рассчитать, на каком расстоянии от радиолокационной станции мож
50 руб.
Облако-вестник (Megha-duta)
Qiwir
: 26 июля 2013
Облако-вестник (Megha-duta)
Лирическая поэма
Калидаса (Kalidasa) IV–V вв. ?
Индийская (санскритская) литература
Некий якша, полубог из свиты бога богатства и владыки северных гор Куберы, сосланный своим господином за какую-то провинность далеко на юг, на исходе лета, когда все, кто оказался вне дома, особенно тоскуют по своим близким, видит в знойном небе одинокое облако. Он решает передать с ним послание любви и утешения своей жене, ждущей его в столице Куберы — Алаке. Обращаясь к облаку с