«Теория сложности вычислительных процессов и структур». Билет №8

Состав работы

material.view.file_icon
material.view.file_icon Экзаменационная работа.doc
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Требования к выполнению заданий.
Билет состоит из двух задач, решение которых необходимо осуществить «вручную», без программирования. Ответ должен быть подготовлен в трехдневный срок и выслан в адрес центра.

Задание 1.
С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
Исходные данные представлены на скиншоте.

Задание 2.

Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.

Исходные данные представлены на скиншоте.

В отчете представлены ответы на поставленные задачи.
Объем отчета составляет 12 страниц формата А4.

Некоторые данные из ответов представлены на мини скриншотах.

Дополнительная информация

Год сдачи: 2020
Преподаватель: Галкина М.Ю.
Работа зачтена с оценкой отлично.

Рекомендую использовать представленные материалы в качестве методической помощи для выполнения своих работ.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8
Билет №8 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 7 7 7 1 4) (7 0 1 7 0 5) (7 1 0 5 6 4) (7 7 5 0 7 4) (1 0 6 7 0 4) (4 5 4 4 4 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограни
User Roma967 : 11 января 2025
350 руб.
Экзаменационная работа по дисциплине: Теория сложности вычислительных процессов и структур. Билет 8 promo
Экзаменационная работа по дисциплине "Теория сложностей вычислительных процессов и структур" Билет №8
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаро
User ilya2014 : 15 мая 2015
250 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User Владислав161 : 5 октября 2023
300 руб.
Теория сложности вычислительных процессов и структур Билет 5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720 Комментарии: Уважаемый студент, дистанционного обучения,
User maksim3843 : 6 марта 2023
300 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
Билет No9 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 6 21 27 2 4 14 3 7 24 52 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
User IT-STUDHELP : 29 декабря 2021
380 руб.
promo
Базы данных на логическоми и функциональном программировании
1.Создание БД Для работы с БД ее необходимо создать. Для этого: 1. Вызовите Access. 2. В появившемся окне установите переключатель «Новая БД» и нажмите кнопку ОК. 3. В появившемся окне «Файл базы данных» в поле ввода «Имя файла» укажите имя новой БД. Пусть в нашем случае оно будет «Vedom». Нажмите кнопку «Создать». Появилось окно базы данных. Теперь можно создавать таблицы БД. Реализуем это на примере справочных таблиц, входящих в нашу БД. Предполагаем, что БД нормализована (как осуще
User evelin : 3 октября 2013
10 руб.
Гармония сексуальная
Гармония сексуальная (греч. harmonia — связь, стройность, соразмерность), взаимное и полное физическое и психическое удовлетворение интимными отношениями. Учитывая, что сексуальная удовлетворённость тесно связана с психологической оценкой интимных отношений, а степень этой удовлетворённости зависит от уровня психосексуальной зрелости, возраста, сексуального опыта, установок личности и многого другого, можно предполагать, что сексуальная гармония возможна практически у любой пары. Бытует ошибочно
User Qiwir : 26 августа 2013
10 руб.
Корпус. Вариант №2. Упражнение №42
Корпус Вариант 2 Упражнение 42 Корпус Упражнение 42 Вариант 2 По двум видам построить третий вид. Выполнить необходимые разрезы. Поставить размеры. Основание модели имеет прямоугольную форму без скругления углов. 3d модель и чертеж (все на скриншотах изображено) выполнены в компасе 3D v13, возможно открыть в 14,15,16,17,18,19 и выше версиях компаса. Просьба по всем вопросам писать в Л/С. Отвечу и помогу.
User bublegum : 16 февраля 2021
100 руб.
Корпус. Вариант №2. Упражнение №42 promo
Поточно-технологическая линия выработки мороженного
1 Технология выработки мороженого. 1.1 Общая характеристика мороженого. 1.1.1. Классификация мороженого. Мороженое – это продукт, полученный взбиванием и замораживанием пастеризованной смеси коровьего молока, сливок, сахара, стабилизаторов и наполнителей. Во многих рецептурах предусматривается одновременное использование молочного и растительного сырья. Замораживаются взбитые, т.е. насыщенные пузырьками воздуха, смеси. Общее число компонентов смесей, разрешенных для применения в производстве мор
User kurs9 : 19 мая 2021
499 руб.
Поточно-технологическая линия выработки мороженного
up Наверх