Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Информационный менеджмент. Вариант №03
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
Описание алгоритма
Задача решается с помощью следующего алгоритма:
1) Заполняем трудоемкости матриц:
Трудоемкости на главной диагонали равны 0:
for i:=1 to n do f(i,i):=0;
2) Внешний цикл по t – длине перемножаемого блока;
Средний цикл по k – местоположению блока;
Внутренний – поиск минимума по j.
for t:=1 to n–1 do
for k:=1 to n–t do
.
ЛАБОРАТОРНАЯ РАБОТА No1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
Описание алгоритма Краскала
Задача: Дан граф G=(V,E) – связный, неориентированный, взвешенный. Нам нужно выделить в нем минимальный (по суммарному весу ребер) связный граф с теми же вершинами – остов (остовное дерево), т.е. исключить из графа часть ребер таким образом, чтобы сумма весов оставшихся была минимальна, и получившийся граф по- прежнему был связным.
ЛАБОРАТОРНАЯ РАБОТА No2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
Описание алгоритма Дейкстры
Ищем расстояние от нулевой вершины.
S = {o}
D[i] = C(0,i) i = 0......n
While S ≠ V do
1. выбираем вершину w, которая принадлежит множеству вершин V\S (V без S) с минимальной стоимостью D(w)
2. S:=S+ w (добавляем вершину w к множеству S )
3. для всех вершин v
V\S do D(v):=min( D(v), D(w)+С(w, v) ) пересчитываем стоимости всех остальных вершин.
ЛАБОРАТОРНАЯ РАБОТА No3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Описание алгоритма
Задача: Имеется склад, на котором есть некоторый ассортимент товаров. Запас каждого товара считается неограниченным. Товары имеют две характеристики: mi – масса, ci – стоимость; .
Необходимо выбрать набор товаров так, чтобы его суммарная масса не превосходила заранее фиксированную массу М (т.е. ), и стоимость набора была как можно больше ( ).
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5
Описание алгоритма
Задача решается с помощью следующего алгоритма:
1) Заполняем трудоемкости матриц:
Трудоемкости на главной диагонали равны 0:
for i:=1 to n do f(i,i):=0;
2) Внешний цикл по t – длине перемножаемого блока;
Средний цикл по k – местоположению блока;
Внутренний – поиск минимума по j.
for t:=1 to n–1 do
for k:=1 to n–t do
.
ЛАБОРАТОРНАЯ РАБОТА No1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0
Описание алгоритма Краскала
Задача: Дан граф G=(V,E) – связный, неориентированный, взвешенный. Нам нужно выделить в нем минимальный (по суммарному весу ребер) связный граф с теми же вершинами – остов (остовное дерево), т.е. исключить из графа часть ребер таким образом, чтобы сумма весов оставшихся была минимальна, и получившийся граф по- прежнему был связным.
ЛАБОРАТОРНАЯ РАБОТА No2
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.
Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0
Описание алгоритма Дейкстры
Ищем расстояние от нулевой вершины.
S = {o}
D[i] = C(0,i) i = 0......n
While S ≠ V do
1. выбираем вершину w, которая принадлежит множеству вершин V\S (V без S) с минимальной стоимостью D(w)
2. S:=S+ w (добавляем вершину w к множеству S )
3. для всех вершин v
V\S do D(v):=min( D(v), D(w)+С(w, v) ) пересчитываем стоимости всех остальных вершин.
ЛАБОРАТОРНАЯ РАБОТА No3
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50
Описание алгоритма
Задача: Имеется склад, на котором есть некоторый ассортимент товаров. Запас каждого товара считается неограниченным. Товары имеют две характеристики: mi – масса, ci – стоимость; .
Необходимо выбрать набор товаров так, чтобы его суммарная масса не превосходила заранее фиксированную массу М (т.е. ), и стоимость набора была как можно больше ( ).
Дополнительная информация
Оценка: Зачет
Дата оценки: 15.02.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 15.02.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Лабораторные работы №№1-3 по дисциплине: Информационный менеджмент. Вариант №03
IT-STUDHELP
: 15 февраля 2022
ЛАБОРАТОРНАЯ РАБОТА No1
по дисциплине
«Теория сложности вычислительных процессов и структур»
Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.
Вариант 3
600 руб.
Контрольная работа по дисциплине: Информационный менеджмент. Вариант №03
IT-STUDHELP
: 3 июля 2023
Контрольная работа
Вариант No03
1. Техническое задание на информатизацию предприятия с использованием свободного ПО
1.1 Описание предметной области
Ювелирный магазин занимается торговлей ювелирных изделий сданных на комиссию. Магазин скупает ювелирные изделия бывшие в употреблении, лом золота и другие драгоценные металлы со вторичного рынка. Комитенты сдают ювелирное изделие на комиссию в магазин, оформляется договор с магазином на продажу. Покупатель выбирает товар. Продавец оформляет договор
1400 руб.
Контрольная работа по дисциплине: Информационный менеджмент. Вариант №03
IT-STUDHELP
: 15 февраля 2022
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
480 руб.
Контрольная работа по дисциплине: Информационный менеджмент. Вариант №03
IT-STUDHELP
: 7 января 2021
Вариант 03. Ювелирный магазин: названия изделий, комитенты (кто сдал изделия на комиссию), журнал сдачи изделий на продажу, журнал покупки изделий
1. Техническое задание на информатизацию предприятия с использованием свободного ПО
Цель: изучение методики анализа задачи внедрения свободного ПО и разработки технического задания для ее решения.
Задание
1. Проанализировать индивидуально заданную согласно номеру варианта предметную область (см. приложение А) и выполнить краткое описание объекта инф
1500 руб.
Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
holm4enko87
: 15 мая 2025
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.
750 руб.
Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
IT-STUDHELP
: 30 декабря 2021
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
900 руб.
Обработка и анализ данных. Контрольная работа и Лабораторные работы 1, 2, 3. Вариант 03.
rmn77
: 24 августа 2022
Обработка и анализ данных. Контрольная работа и Лабораторные работы 1, 2, 3. Вариант 03.
Каждая работа выполняется по одному из 4-х вариантов. Номер варианта рассчитывается посредством деления двух последних цифр своего пароля на 4, получению остатка от деления и увеличения его на 1.
****************************************************************
Помогу с вашим вариантом, дисциплиной, сессией, гос.экзаменом, дипломной или онлайн-тестом.
Возможна бесплатная сдача онлайн-тестов на особых усло
1600 руб.
Контрольная работа и Лабораторные работы №1-4 по дисциплине: Банки и базы данных. Вариант №03.
teacher-sib
: 25 ноября 2016
Контрольная работа
По дисциплине: Банки и базы данных
На тему: Проектирование реляционных баз данных
Цель работы
Целью выполнения контрольной работы по курсу “Банки и базы данных” является:
• изучение этапов проектирования реляционных баз данных;
• приобретение практических навыков в разработке и реализации информационных систем;
• приобретение навыков работы с реляционными базами данных.
Задание (вариант 3):
Агентство недвижимости.
База данных должна содержать сведения о следующих объект
500 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.