Лабораторная работа 3 по дисциплине: Методы машинного обучения. Вариант 9
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No3
Вариант 9
Целью данной лабораторной работы является разработка программы, реализующей применение метода линейной регрессии к заданному набору данных.
Набор данных содержит в себе информацию о вариантах португальского вина "Винью Верде". Входные переменные представляют собой 13 столбцов со значениями, полученными на основе физико-химических тестов, а именно:
0 – цвет вина (“red” / ”white”)
1 - фиксированная кислотность
2 - летучая кислотность
3 - лимонная кислота
4 - остаточный сахар
5 - хлориды
6 - свободный диоксид серы
7 - общий диоксид серы
8 - плотность
9 - pH
10 - сульфаты
11 - спирт
Выходная переменная (на основе сенсорных данных):
12 - качество (оценка от 0 до 10, целое число)
Классы упорядочены и не сбалансированы (например, нормальных вин гораздо больше, чем отличных или плохих). В предоставленных данных есть пропуски и неточности. Задания выполняются согласно варианту. Чтобы определить номер варианта, воспользуйтесь следующей формулой:
Nварианта = (Nпо списку mod 4) + 1 = 2
Варианты заданий:
1) Использовать классическую модель LinearRegression
2) Использовать модель LASSO
3) Использовать модель LARS
4) Использовать модель ElasticNet
Задание: Данные необходимо рассматривать как три набора. Данные для красного вина, данные для белого, общие данные вне зависимости от цвета. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
Вариант 9
Целью данной лабораторной работы является разработка программы, реализующей применение метода линейной регрессии к заданному набору данных.
Набор данных содержит в себе информацию о вариантах португальского вина "Винью Верде". Входные переменные представляют собой 13 столбцов со значениями, полученными на основе физико-химических тестов, а именно:
0 – цвет вина (“red” / ”white”)
1 - фиксированная кислотность
2 - летучая кислотность
3 - лимонная кислота
4 - остаточный сахар
5 - хлориды
6 - свободный диоксид серы
7 - общий диоксид серы
8 - плотность
9 - pH
10 - сульфаты
11 - спирт
Выходная переменная (на основе сенсорных данных):
12 - качество (оценка от 0 до 10, целое число)
Классы упорядочены и не сбалансированы (например, нормальных вин гораздо больше, чем отличных или плохих). В предоставленных данных есть пропуски и неточности. Задания выполняются согласно варианту. Чтобы определить номер варианта, воспользуйтесь следующей формулой:
Nварианта = (Nпо списку mod 4) + 1 = 2
Варианты заданий:
1) Использовать классическую модель LinearRegression
2) Использовать модель LASSO
3) Использовать модель LARS
4) Использовать модель ElasticNet
Задание: Данные необходимо рассматривать как три набора. Данные для красного вина, данные для белого, общие данные вне зависимости от цвета. Необходимо построить модель для каждого из наборов, обучить её и сравнить полученные при помощи модели результаты с известными. Для обучения использовать 70% выборки, для тестирования 30%. Разбивать необходимо случайным образом, а, следовательно, для корректности тестирования качества модели, эксперимент необходимо провести не менее 10 раз и вычислить среднее значение качества регрессии.
Дополнительная информация
Оценка: Зачет
Дата оценки: 04.04.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 04.04.2022
Помогу с вашим онлайн тестом, другой работой или дисциплиной.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Лабораторная работа 3 по дисциплине: Методы машинного обучения. Вариант 3
IT-STUDHELP
: 4 апреля 2022
Лабораторная работа No3
Вариант 3
Целью данной лабораторной работы является разработка программы, реализующей применение метода линейной регрессии к заданному набору данных.
Набор данных содержит в себе информацию о вариантах португальского вина "Винью Верде". Входные переменные представляют собой 13 столбцов со значениями, полученными на основе физико-химических тестов, а именно:
0 – цвет вина (“red” / ”white”)
1 - фиксированная кислотность
2 - летучая кислотность
3 - лимонная кислота
4 - оста
500 руб.
Контрольная и Лабораторная работа 3 по дисциплине: Методы машинного обучения. Вариант 3
IT-STUDHELP
: 4 апреля 2022
Контрольная работа по методам классификации
Выбор варианта:
N = 3
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=6
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=1
Обучающая последовательность и тестовый объект для метода ближайших соседей:
6) (X,Y)={ (7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,1
1350 руб.
«Методы машинного обучения»
Илья272
: 5 ноября 2023
Контрольная работа состоит из нескольких заданий. От варианта студента зависят входные данные, для которых будут решаться задания, а также некоторые особенности выполнения заданий.
Всем студентам предоставляются наборы данных, в зависимости от варианта, для этих данных необходимо:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения (описание метода можно найти по ссылке). От варианта зависят весовая функция и значение k.
2) Построить классифик
1300 руб.
«Методы машинного обучения»
Илья272
: 5 ноября 2023
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
2) Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученно
700 руб.
Контрольная работа по дисциплине: Методы машинного обучения. Вариант 9
IT-STUDHELP
: 4 апреля 2022
Контрольная работа по методам классификации
Выбор варианта: N = 9
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=1.
Обучающая последовательность и тестовый объект:
1) (X,Y)={(1,8,1), (1,3,1), (3,5,1), (1,1,1), (2,7,1), (3,8,1), (2,4,1), (8,7,2), (11,12,2), (12,14,2), (8,13,2)}: тестовый объект x’=(5,8).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1.
Весовая функция:
1) — метод ближайших соседей.
Вариант выборки для мет
1000 руб.
Методы машинного обучения. Вариант №1
IT-STUDHELP
: 24 ноября 2021
Контрольная работа по методам классификации
Выбор варианта: N = 1
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=4.
Обучающая последовательность и тестовый объект:
4) (X,Y)={(7,9,1), (2,5,1), (5,6,1), (8,6,1), (7,6,1), (7,9,2), (14,7,2), (14,2,2), (6,7,2), (10,3,2), (11,9,2), (9,1,2)}: тестовый объект x’=(12,12).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=3.
Весовая функция:
3) — метод парзеновского окна фиксированной ши
1000 руб.
Методы машинного обучения. Билет №6
IT-STUDHELP
: 24 ноября 2021
Билет №6
1) Что такое правило Хэбба?
2) Что такое сингулярное разложение? Как оно используется для решения задачи наименьших квадратов?
350 руб.
Методы машинного обучения. Вариант №8
IT-STUDHELP
: 15 ноября 2021
Задание на лабораторную работу
Общее задание является единым для всех вариантов, вариант влияет только на тип входных данных и способ ввода. Способов ввода будет 2:
Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрес
500 руб.
Другие работы
Контрольная работа по Теории Вероятности МС и СП
fominovich
: 5 сентября 2015
Текст 2. Вероятность появления поломок на каждой из 4 соединительных линий равна 0,1. Какова вероятность того, что хотя бы две линии исправны?
Текст 3. В одной урне 5 белых шаров и 5 чёрных шаров, а в другой – 4 белых и 7 чёрных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Текст 4. В типографии имеется 4 печатные машины. Для каждой маш
500 руб.
Лабораторная работа по физике (часть 2-я). Определение длины электромагнитной волны методом дифракции Фраунгофера, вариант №6
mixalkina94
: 27 декабря 2021
Определение длины электромагнитной волны методом дифракции Фраунгофера
4. Задание
1. Выбрать линзу “Л2”, задав фокусное расстояние L от 25 до 35 см.
2. Получить интерференционную картину на экране.
3. Установить красный светофильтр. Измерить расстояние l1 от середины максимума первого порядка до середины центрального максимума по шкале экрана. Записать полученное значение в отчет по лабораторной работе.
4. Повторить измерения для максимума второго порядка.
5. Установить фиолетовый светофильтр.
250 руб.
Экзамен по математическому анализу. 1-й курс. Билет № 13
Despite
: 14 января 2013
1. Непрерывность функции в точке, на интервале. Точки разрыва функции и их классификация.
2. Формула Тейлора для функции одного переменного.
3. Вычислить предел lim (tgx) в степени 2x-п .
4. Исследовать на экстремум функцию: z=4x2-8xy+8y2+12x-3.
5. Найти интеграл 3 корень квадратный из lnx/x dx
6. Вычислить интеграл dx/1+корень квадратный x
7. Исследовать сходимость интеграла xe в степени -x dx
8. Найти площадь фигуры, ограниченной линиями y=lnx; x=2; y=0
100 руб.
Билет №3 по дисциплине "Физические основы электроники"
Помощь студентам СибГУТИ ДО
: 23 февраля 2013
1. Электронно - дырочный переход. Образование p-n перехода. Распределение носителей заряда. P-n переход в состоянии равновесия. Физические процессы. Образование контактной разности потенциалов. Толщина p-n перехода.
2. Зависимость характеристик БТ от температуры для различных схем включения.
100 руб.