Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
Дополнительная информация
Вид работы: экзамен
Оценка: отлично
год сдачи: 2022
Оценка: отлично
год сдачи: 2022
Похожие материалы
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №13
sun525
: 10 ноября 2014
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
0 2 0 0 0
2 0 5 3 4
0 5 0 0 2
0 3 0 0 4
0 4 2 4 0
2.Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур. Билет №13
IT-STUDHELP
: 19 апреля 2019
Билет No13
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×8],M4[8×4],M5[4×7]
200 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №13
Amor
: 27 октября 2013
Билет 13.
Задание 1.
Дано: неориентированный граф, заданный матрицей весов рёбер.
0 2 0 0 0
2 0 5 3 4
0 5 0 0 2
0 3 0 0 4
0 4 2 4 0
Найти: минимальное остовное дерево алгоритмом Крускала.
250 руб.
Теория сложностей вычислительных процессов и структур (БИЛЕТ №13)
GTV8
: 4 мая 2013
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
1. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
300 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзаменационный билет № 13 по дисциплине Теория сложности вычислительных процессов и структур
Некто
: 16 сентября 2018
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2.Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
100 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Другие работы
Рабинович Сборник задач по технической термодинамике Задача 172
Z24
: 30 ноября 2025
Отходящие газы котельной установки проходят через воздухоподогреватель. Начальная температура газов tг1=300 ºС, конечная tг2=160 ºС; расход газов равен 1000 кг/ч. Начальная температура воздуха составляет tв1=15 ºС, а расход его равен 910 кг/ч.
Определить температуру нагретого воздуха tв2, если потери воздухоподогревателя составляют 4%.
Средние теплоемкости (сpm) для отходящих из котла газов и воздуха принять соответственно равными 1,0467 и 1,0048 кДж/(кг·К).
Ответ: tв2=168,9 ºС.
150 руб.
Теоретическая механика РГАЗУ Задача 2 Рисунок 1 Вариант 10
Z24
: 19 ноября 2025
Определение реакций опор составной конструкции
Для составной конструкции АВС определить реакции опор А и В, возникающие под действием сосредоточенных сил Р1 и Р2, алгебраического момента пары сил М и равномерно распределенной нагрузки интенсивностью q.
250 руб.
Экзамен по дисциплине: Разработка и проектирование интернет вещей. Билет №6
xtrail
: 16 августа 2024
Билет №6
1. Модуль Arduino nano. Устройство, основные параметры
2. Практическая реализация IoT «Умная медицина»
200 руб.
Теоретическая механика ДВГУПС 2014 Задача С1 Рисунок 0 Номер условия 5
Z24
: 22 января 2026
Однородная балка весом G, расположенная в вертикальной плоскости (табл. С1, рис. С1.0–С1.9), закреплена в точке А шарнирно, а в точке В прикреплена к вертикальному стержню с шарнирами на концах. На балку действуют: пара сил с моментом М = 20 кН·м, равномерно распределенная нагрузка с интенсивностью q и сила Fi , значение и точка приложения которой указаны в табл. C1. Расстояния между точками A, B, C, D, E, H, K, L равны a = 0,4 м.
Определить реакции связей в точках А, В, вызываемые де
200 руб.