Зачетная работа По дисциплине: Теория сложности вычислительных процессов и структур (ДВ 2.1). Билет №04.

Состав работы

material.view.file_icon
material.view.file_icon 04-Билет.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Билет №4
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8 
3 8 18 52


2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).

Дополнительная информация

Помогу с вашим вариантом работы.
Выполняю семестры под ключ
currrent@ya.ru
https://progame59.ru/sibguti
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User Владислав161 : 5 октября 2023
300 руб.
Теория сложности вычислительных процессов и структур Билет 5
Билет No5 1. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[3×5],M2[5×2],M3[2×7],M4[7×4],M5[4×5]. 2. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 040764 401327 010541 735037 624302 471720 Комментарии: Уважаемый студент, дистанционного обучения,
User maksim3843 : 6 марта 2023
300 руб.
Теория сложностей вычислительных процессов и структур. Билет №9
Билет No9 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 6 21 27 2 4 14 3 7 24 52 2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) д
User IT-STUDHELP : 29 декабря 2021
380 руб.
promo
«Теория сложности вычислительных процессов и структур». Билет №8
Требования к выполнению заданий. Билет состоит из двух задач, решение которых необходимо осуществить «вручную», без программирования. Ответ должен быть подготовлен в трехдневный срок и выслан в адрес центра. Задание 1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 4 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). Исходные д
User boeobq : 29 ноября 2021
230 руб.
«Теория сложности вычислительных процессов и структур». Билет №8
Привод к междуэтажному подъемнику
Содержание Введение…………………………………………………………………………...4 1. Кинематический расчет привода…………………………………………….6 1.1 Подбор электродвигателя для привода…………………………………..6 1.2 Расчет значений крутящих моментов на всех валах привода…….…….7 1.3 Расчет частот вращения валов привода…………………………….…..7 2. Эскизное проектирование зубчатого редуктора……………………………..8 2.1 Проектирование зубчатой передачи………………………………………8 2.2 Расчет закрытой конической зубчатой передачи……………………..….9 2.3 Проектирование вало
User Рики-Тики-Та : 7 января 2011
55 руб.
Червячно-цилиндрический механизм
Червячно-цилиндрический механизм
User sanjokrap : 10 июня 2012
Использование пакета Cold Fusion для MS Windows при построении WWW - интерфейсов к базам данных
5.1Введение 5.2Установка Cold Fusion 5.3Администрирование Cold Fusion 5.4Взаимодействие Cold Fusion с базами данных 5.5Передача параметров в DBML - шаблон 5.6Занесение и модификация данных с использованием тегов DBINSERT и DBUPDATE 5.7Выполнение запросов к базам данных 5.8Использование результатов запроса для динамического создания HTML - документа 5.9Вывод результата выполнения запроса в виде таблицы 5.10Дополнительные замечания по созданию DBML - шаблонов 5.11Использование параметров
User Slolka : 2 октября 2013
10 руб.
Задание 32. Задача 2. Диметрия модели
Возможные программы для открытия данных файлов: WinRAR (для распаковки архива *.zip или *.rar) КОМПАС 3D не ниже 16 версии для открытия файлов *.cdw, *.m3d Любая программа для ПДФ файлов. Боголюбов С.К. Индивидуальные задания по курсу черчения, 1989/1994/2007. Задание 32. Задача 2. Диметрия модели. Построить диметрическую проекцию модели с вырезом передней четверти. В состав выполненной работы входят 4 файла: 1. 3D модель детали, выполненная по данному заданию, расширение файла *.m3d 2. Ассо
80 руб.
Задание 32. Задача 2. Диметрия модели
up Наверх