Страницу Назад
Поискать другие аналоги этой работы

600

Зачетная работа по дисциплине: Алгоритмы и алгоритмические языки. Билет 23

ID: 229058
Дата закачки: 14 Октября 2022
Продавец: Елена (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Работа Зачетная
Форматы файлов: Microsoft Word
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
Билет №23

Введение в теорию алгоритмов
1.2 Эвристический алгоритм – это:
а) это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя.
б) набор команд (указаний), выполняемых последовательно во времени друг за другом.
в) алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.
г) алгоритм, который дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.
д) алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными.
е) алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

1.3 Вспомогательный (подчиненный) алгоритм – это
а) это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя.
б) набор команд (указаний), выполняемых последовательно во времени друг за другом.
в) алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.
г) алгоритм, который дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.
д) алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными.
е) алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

1.5 Циклический алгоритм – это:
а) это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя.
б) набор команд (указаний), выполняемых последовательно во времени друг за другом.
в) алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.
г) алгоритм, который дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.
д) алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными.
е) алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

1.7 Вероятностный (стохастический) алгоритм – это:
а) это такой алгоритм, в котором достижение конечного результата программы действий однозначно не предопределено, так же как не обозначена вся последовательность действий, не выявлены все действия исполнителя.
б) набор команд (указаний), выполняемых последовательно во времени друг за другом.
в) алгоритм, содержащий хотя бы одно условие, в результате проверки которого ЭВМ обеспечивает переход на один из двух возможных шагов.
г) алгоритм, который дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.
д) алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными.
е) алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

1.9 Множество М называется разрешимым
а) если существует алгоритм, позволяющий перечислить все элементы этого множества (возможно с повторениями).
б) тогда и только тогда, когда оно само и его дополнение эффективно перечислимы.
в) если для него существует алгоритм, решающий проблему вхождения слова x в М.

1.10 Множество М называется эффективно перечислимым, если
а) если существует алгоритм, позволяющий перечислить все элементы этого множества (возможно с повторениями).
б) тогда и только тогда, когда оно само и его дополнение эффективно перечислимы.
в) если для него существует алгоритм, решающий проблему вхождения слова x в М.

 
1.11 Если множества М и L эффективно перечислимы, то
а) эффективно перечислимы множества M  L и M  L.
б) эффективно перечислимы множества M  L и M  L.
в) разрешимы множества M  L и M  L.
г) разрешимы множества M  L и M  L.

1.12 Свойство, означающее, что процесс решения задачи, определяемый алгоритмом, расчленен на отдельные элементарные шаги, соответствует
а) дискретности
б) детерминированности
в) результативности
г) массовости


Основы классической теории алгоритмов
2.3 Согласно тезису Чёрча-Клини:
а) каждая интуитивно вычислимая функция является частично рекурсивной.
б) каждая рекурсивная функция является вычислимой.
в) каждая интуитивно вычислимая функция является частично рекурсивной.
г) каждая интуитивно вычислимая функция является общерекурсивной.

2.4 Функция f(x1, x2,…, xn) называется общерекурсивной,
а) если она может быть получена за конечное число шагов из простейших функций при помощи операций суперпозиции, схем примитивной рекурсии и -оператора.
б) если она частично рекурсивна и всюду определена.
в) если она не может быть получена за конечное число шагов из простейших функций при помощи операций суперпозиции, схем примитивной рекурсии и -оператора.
г) если она частично рекурсивна и определена только в конкретном диапазоне значений.

2.5 В подходах к определению понятия алгоритма можно выделить … основных направления:
а) 3 б) 5 в) 2 г) 4

2.6 Слово р называется подсловом слова q,
а) если слово p можно представить в виде p=qr, где r - любое слово, в том числе и пустое.
б) если слово q можно представить в виде q=pr, где r - любое слово, в том числе и пустое.
в) если слово r можно представить в виде r=pq, где r - любое слово, в том числе и пустое.

2.8 Существует ли машина Тьюринга T0, решающая проблему остановки для произвольной машины Тьюринга T:
а) нет б) да.

2.9 Остановка МТ происходит, когда
а) выполнена последняя подстановка
б) в состоянии P0 машина остается на месте
в) не изменяется символ внутреннего алфавита
г) не изменяется символ внешнего алфавита, состояние МТ остается неизменным, сдвиг – нулевой.

2.11 . Фрагмент программы машины Поста 1.→2 2. ?(1, 3) определяет :
а) Движение влево до первой метки
б) Движение вправо до первой метки
в) Движение влево до первой пустой ячейки
г) Нахождение метки и её удаление.

2.13 Нормальный алгоритм Маркова стоит из:
а) множества состояний
б) команды движения каретки
в) системы подстановок
г) ленты
д) алфавита


Основы алгоритмической теории формальных языков
3.1Операция объединения или сложения двух цепочек символов, это
а) Конкатенация
б) Обращение
в) Итерация
г) Ассоциация

3.3 При графическом описании грамматики нетерминальный символ (или цепочка символов) обозначается
а) прямоугольником, в который вписано обозначение символа
б) овалом, кругом или прямоугольником с закругленными краями, внутрь которого вписана цепочка
в) жирной точкой или закрашенным кружком

 
3.6 Правило (или продукция) — это
а) совокупность элементарных конструкций языка
б) это упорядоченная пара цепочек символов()
в) описание способа построения предложений некоторого языка.

3.7 Существует … типа грамматик Хомскому
а)4
б)5
в)2
г)3

3.8 Тип 0: грамматики с фразовой структурой –
а) в него подпадают все без исключения формальные грамматики
б) не существует
в) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A2->2, где 12V * , A VN, V + ; грамматики G(VT,VN,P,S), V = VNVT имеют правила вида ->, где , V + , ||>=||
г) к типу относятся два эквивалентных класса грамматик: леволинейные и праволинейные.
д) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A->, где A VN, V + .

3.9 Тип 1: контекстно-зависимые (КЗ) и неукорачивающие грамматики
а) в него подпадают все без исключения формальные грамматики
б) не существует
в) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A2->2, где 12V * , A VN, V + ; грамматики G(VT,VN,P,S), V = VNVT имеют правила вида ->, где , V + , ||>=||
г) к типу относятся два эквивалентных класса грамматик: леволинейные и праволинейные.
д) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A->, где A VN, V + .

3.10 Тип 2: контекстно-свободные (КС) грамматики
а) в него подпадают все без исключения формальные грамматики
б) не существует
в) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A2->2, где 12V * , A VN, V + ; грамматики G(VT,VN,P,S), V = VNVT имеют правила вида ->, где , V + , ||>=||
г) к типу относятся два эквивалентных класса грамматик: леволинейные и праволинейные.
д) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A->, где A VN, V + .

3.12 Тип 4: дискретные грамматики
а) в него подпадают все без исключения формальные грамматики
б) не существует
в) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A2->2, где 12V * , A VN, V + ; грамматики G(VT,VN,P,S), V = VNVT имеют правила вида ->, где , V + , ||>=||
г) к типу относятся два эквивалентных класса грамматик: леволинейные и праволинейные.
д) грамматики G(VT,VN,P,S), V = VNVT имеют правила вида: A->, где A VN, V + .

3.13 Набор правил, определяющий допустимые конструкции языка называется
а) Синтаксисом языка
б) Семантикой языка
в) Лексикой языка
г) Алфавитом языка

Основы теории сложности
4.1 O(1)константная сложность:
а) Большинство операций в программе выполняются только раз или только несколько раз. Время выполнения алгоритма не зависит от размера входных данных.
б) Алгоритмы, в которых элементы входных данных обрабатываются во вложенных циклах: двойные циклы - квадратичная сложность О(N2); циклы глубины 3 - кубическая сложность О(N3)
в) Алгоритмы, в которых каждый элемент входных данных требуется обработать лишь линейное число раз. Время работы программы линейно зависит от размера входных данных.
г) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности, но для получения общего решения нужно соединить решения отдельных задач (например, в алгоритме построения кода Хаффмана).
д) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности (например, в алгоритме построения кода Шеннона-Фано).
е) Такие алгоритмы чаще всего возникают в результате подхода, именуемого метод грубой силы.

4.2 O(N) линейная сложность:
а) Большинство операций в программе выполняются только раз или только несколько раз. Время выполнения алгоритма не зависит от размера входных данных.
б) Алгоритмы, в которых элементы входных данных обрабатываются во вложенных циклах: двойные циклы - квадратичная сложность О(N2); циклы глубины 3 - кубическая сложность О(N3)
в) Алгоритмы, в которых каждый элемент входных данных требуется обработать лишь линейное число раз. Время работы программы линейно зависит от размера входных данных.
г) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности, но для получения общего решения нужно соединить решения отдельных задач (например, в алгоритме построения кода Хаффмана).
д) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности (например, в алгоритме построения кода Шеннона-Фано).
е) Такие алгоритмы чаще всего возникают в результате подхода, именуемого метод грубой силы.

4.5 O(N * Log(N)) логарифмическая сложность n-log-n:
а) Большинство операций в программе выполняются только раз или только несколько раз. Время выполнения алгоритма не зависит от размера входных данных.
б) Алгоритмы, в которых элементы входных данных обрабатываются во вложенных циклах: двойные циклы - квадратичная сложность О(N2); циклы глубины 3 - кубическая сложность О(N3)
в) Алгоритмы, в которых каждый элемент входных данных требуется обработать лишь линейное число раз. Время работы программы линейно зависит от размера входных данных.
г) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности, но для получения общего решения нужно соединить решения отдельных задач (например, в алгоритме построения кода Хаффмана).
д) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности (например, в алгоритме построения кода Шеннона-Фано).
е) Такие алгоритмы чаще всего возникают в результате подхода, именуемого метод грубой силы.

4.6 O(2N) экспоненциальная сложность:
а) Большинство операций в программе выполняются только раз или только несколько раз. Время выполнения алгоритма не зависит от размера входных данных.
б) Алгоритмы, в которых элементы входных данных обрабатываются во вложенных циклах: двойные циклы - квадратичная сложность О(N2); циклы глубины 3 - кубическая сложность О(N3)
в) Алгоритмы, в которых каждый элемент входных данных требуется обработать лишь линейное число раз. Время работы программы линейно зависит от размера входных данных.
г) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности, но для получения общего решения нужно соединить решения отдельных задач (например, в алгоритме построения кода Хаффмана).
д) Алгоритмы, в которых большая задача делится на несколько небольших подзадач, они решаются по отдельности (например, в алгоритме построения кода Шеннона-Фано).
е) Такие алгоритмы чаще всего возникают в результате подхода, именуемого метод грубой силы.

4.8 Если алгоритм имеет экспоненциальную сложность то
а) при увеличении N можем не получить решение задачи физически, т.к. это займёт очень много времени.
б) имеет место значительное преимущество при улучшении технических характеристик компьютера.
в) улучшение технических характеристик практически незаметно.

Комментарии: Зачет. 2022 год.
Преподаватель: Полетайкин Алексей Николаевич

Размер файла: 26,5 Кбайт
Фаил: Microsoft Word (.docx)

   Скачать

   Добавить в корзину


        Коментариев: 0


Есть вопросы? Посмотри часто задаваемые вопросы и ответы на них.
Опять не то? Мы можем помочь сделать!

Некоторые похожие работы:

К сожалению, точных предложений нет. Рекомендуем воспользоваться поиском по базе.

Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Алгоритмы и алгоритмические языки / Зачетная работа по дисциплине: Алгоритмы и алгоритмические языки. Билет 23
Вход в аккаунт:
Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
UnionPay СБР Ю-Money qiwi Payeer Крипто-валюты Крипто-валюты


И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках


Сайт помощи студентам, без посредников!