Контрольная работа по дисциплине: Высшая математика. Вариант 2.4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 2.4.
1. Найдите производные от данных функций:
а) y=(1-√x)^2/x,y^' (0,01)
б) y=2^x e^(-x)+x,y^' (0)
в) y=arcsinx/√(1-x^2 ),y^' (0)
2. Дана функция y=e(x 〖ln〗^2x-2x lnx+2x). Найдите y_xx^′′. Вычислите y_xx^′′ (e).
3. Задана функция f(x)=[((x^2+1)/(x-1)@x arcsinx@xe^(-x) )]. Найдите f'(x) и f''(x). Вычислите f^' (0) и f^′′ (0).
4. Докажите, что функция z=cos(xy) удовлетворяет уравнению:
y^2 (∂^2 z)/(∂y^2 )-x^2 (∂^2 z)/(∂x^2 )=0.
5. Дана функция f(x)=[(arctg (x+y)/(x-y)@(sinπ x)/(π cosπ y))]. Найдите f'(x,y). Вычислите f^' (1,0).
6. Дана функция u=4 arcsin(xz+y^2-1). Найдите:
а) координаты вектора grad u в точке M(1/5,1,3);
б) ∂u/∂aв точке М в направлении вектора а{1,–2,2};
7. Найдите y_xx^(''), если {█(&x=lnsint@&y=〖cos〗^2t ). Вычислите y_xx^(''), если t=π/6.
Задача 8. Функция z=z(x,y), задана неявно уравнением
x^2+2y^2-3z^2+xy-z-3=0.
Вычислите:
а) ∂z/∂x (1,-2,1);
б) ∂z/∂y (1,-2,1).
9. К графику функции f(x)=√x в точке с абсциссой х =1 проведена касательная. Найдите ординату точки графика касательной, абсцисса которой равна 31.
10. Найдите dy, если y=x^8. Вычислите значение dy, если x=2,Δx=0,001.
11. Дана функция z=x^2-y^2+6x+3y и точки M_0=(2;3) и M_1=(2,02;2,97). Вычислите Δz и dz при переходе из точки M_0 в точку M_1 (ответ округлить до сотых).
12. Дана функция y=2(x^2+3)/(x^2-2x+5). Найти ее наибольшее и наименьшее значение на отрезке [–3,3].
13. Дана функция z=x^2+2xy-y^2-4x. Найдите ее наибольшее и наименьшее значения на замкнутом множестве, ограниченном прямыми y=x+1,
y=0, x=3.
14. Проведите полное исследование функции y=2/x-1/x^2 и начертите ее график.
1. Найдите производные от данных функций:
а) y=(1-√x)^2/x,y^' (0,01)
б) y=2^x e^(-x)+x,y^' (0)
в) y=arcsinx/√(1-x^2 ),y^' (0)
2. Дана функция y=e(x 〖ln〗^2x-2x lnx+2x). Найдите y_xx^′′. Вычислите y_xx^′′ (e).
3. Задана функция f(x)=[((x^2+1)/(x-1)@x arcsinx@xe^(-x) )]. Найдите f'(x) и f''(x). Вычислите f^' (0) и f^′′ (0).
4. Докажите, что функция z=cos(xy) удовлетворяет уравнению:
y^2 (∂^2 z)/(∂y^2 )-x^2 (∂^2 z)/(∂x^2 )=0.
5. Дана функция f(x)=[(arctg (x+y)/(x-y)@(sinπ x)/(π cosπ y))]. Найдите f'(x,y). Вычислите f^' (1,0).
6. Дана функция u=4 arcsin(xz+y^2-1). Найдите:
а) координаты вектора grad u в точке M(1/5,1,3);
б) ∂u/∂aв точке М в направлении вектора а{1,–2,2};
7. Найдите y_xx^(''), если {█(&x=lnsint@&y=〖cos〗^2t ). Вычислите y_xx^(''), если t=π/6.
Задача 8. Функция z=z(x,y), задана неявно уравнением
x^2+2y^2-3z^2+xy-z-3=0.
Вычислите:
а) ∂z/∂x (1,-2,1);
б) ∂z/∂y (1,-2,1).
9. К графику функции f(x)=√x в точке с абсциссой х =1 проведена касательная. Найдите ординату точки графика касательной, абсцисса которой равна 31.
10. Найдите dy, если y=x^8. Вычислите значение dy, если x=2,Δx=0,001.
11. Дана функция z=x^2-y^2+6x+3y и точки M_0=(2;3) и M_1=(2,02;2,97). Вычислите Δz и dz при переходе из точки M_0 в точку M_1 (ответ округлить до сотых).
12. Дана функция y=2(x^2+3)/(x^2-2x+5). Найти ее наибольшее и наименьшее значение на отрезке [–3,3].
13. Дана функция z=x^2+2xy-y^2-4x. Найдите ее наибольшее и наименьшее значения на замкнутом множестве, ограниченном прямыми y=x+1,
y=0, x=3.
14. Проведите полное исследование функции y=2/x-1/x^2 и начертите ее график.
Дополнительная информация
Оценка: Отлично
Дата оценки: 03.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 03.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант №2
IT-STUDHELP
: 7 ноября 2023
Вариант No2
Задание 1. Однородная пластинка имеет форму четырёхугольника (см. рис.). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Найти общее решение дифференциального уравнения.
y^'+ytgx=1/cosx
Задание 3. Найти область сходимости степенного ряда.
∑_(n=1)^∞▒(x+1)^n/((2n-1)!)
Задание 4. Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
∫_0^0,5▒〖x^3 ln(1+x) 〗 d
500 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант №2
Roma967
: 20 ноября 2019
Задание 1. Кратные интегралы (см. скрин)
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2. Дифференциальные уравнения
Найти общее решение дифференциальною уравнения.
y'+ytgx=(1/cosx)
Задание 3. Степенные ряды
Найти область сходимости степенного ряда (см. скрин).
Задание 4. Приближенные вычисления с помощью разложения функции в ряд
Вычислить с точностью до 0.001 значение
600 руб.
Контрольная работа по дисциплине: Высшая математика (часть 1-я). Вариант №2
Учеба "Под ключ"
: 25 марта 2021
Вариант 2
Задание 1. Матричная алгебра
Решить систему уравнений методом Крамера:
x-2y+3z=1
2x+3y-4z=-2
3x-2y-5z=1
Задание 2. Аналитическая геометрия
По заданным точкам A, B, C и D составить уравнение прямой AB и плоскости BCD, вычислить угол между ними и найти расстояние от точки до плоскости BCD.
A(0,0,0), B(-1,0,0), C(0,1,0), D(1,2,1)
Задание 3. Предел функции
Вычислить предел отношения величин.
а) lim(x->oo) (5x^(2)-1)/(2x^(2)+3x+4)
б) lim(x->0) (1-cos2x)/(xsinx)
Задание 4. Исследование ф
600 руб.
Контрольная работа по дисциплине «Высшая математика. Часть 1» Вариант 2
Nadyuha
: 20 мая 2019
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию. Используя результаты исследования, построить её график.
4. Дана функция. Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
200 руб.
Контрольная работа №2 по дисциплине «Высшая математика» Вариант 2
Nadyuha
: 27 января 2020
1. Однородная пластина имеет форму четырехугольника. Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
2. Найти общее решение дифференциального уравнения
3. Найти область сходимости степенного ряда
4. Вычислить с точностью до 0,001 значение определенного интеграла, разлагая подынтегральную функцию в степенной ряд
5. По заданным условиям построить область в комплексной плоскости
6. Вычислить значение функции комплексного переменного, результат пр
200 руб.
Контрольная работа по дисциплине: Высшая математика. Вариант №
IT-STUDHELP
: 18 июля 2023
Контрольная работа
Вариант 4.
1. Найти область сходимости ряда:
∑_(n=1)^∞▒(x-2)^n/(n⋅5^n )
2. Вычислить с точностью до 0,001, разлагая подынтегральную функцию в степенной ряд:
∫_0^1▒〖e^(-x^2/2) dx〗.
3. Разложить функцию f(x)=(π-x)/2 , заданную на отрезке [0;2π], в ряд Фурье.
4. Найти общее решение дифференциального уравнения:
(1+e^x ) y^'=ye^x
5. Найти частное решение дифференциального уравнения, удовлетворяющего данному начальному условию:
y^'=y/x+sin(y/x), y(1)=π/2.
6. Найти частное ре
400 руб.
Контрольная работа по дисциплине "Высшая математика" (часть 2) Вариант 1
Baltika
: 22 сентября 2025
Сдано в 2023 году
Проверил: Храмова Т.В.
Оценка: Зачёт
200 руб.
Контрольная работа по дисциплине: Высшая математика (часть 2). Вариант № 1
holm4enko87
: 10 ноября 2024
Задание 1
Однородная пластина имеет форму четырехугольника (см. рисунок). Указаны координаты вершин. С помощью двойного интеграла вычислить координаты центра масс пластины.
Задание 2
Найти общее решение дифференциального уравнения
xy`+y-e^(x)=0
Задание 3
Найти область сходимости степенного ряда:
(n+1)x^(n)/(3^(n))
Задание 4
Вычислить с точностью до 0,001 значение определённого интеграла, разлагая подынтегральную функцию в степенной ряд.
x^(3)e^(-x)dx
Задание 5
По заданным условиям, построить
400 руб.
Другие работы
Разработка топологии интегральной схемы uA78L00
Orlandovich
: 16 января 2014
Целью данного РГЗ является приобретение практических навыков решения инженерной задачи, создание конкретного микроэлектронного изделия, а так же закрепление, углубление и обобщение теоретических знаний, полученных на предыдущих этапах обучения в ВУЗе.
Задание:
1. Ввести электрическую схему ИС (µA78L05AC) в систему моделирования MicroCap 9.0. Определить токи и напряжения во всех элементах интегральной схемы. Вид схемы взят из [1].
2. Рассчитать топологию резистора, конденсатора и транзистора исх
400 руб.
Физические основы электроники. Лабораторная работа № 2. Вариант №1
Gila
: 19 февраля 2019
Цель работы
Ознакомиться с устройством и принципом действия биполярного транзистора (БТ). Изучить его вольтамперные характеристики в схемах включения с общей базой (ОБ) и общим эмиттером (ОЭ).
1. Принципиальная схема для транзистора структуры n-p-n для исследования входных характеристик с (ОБ) приведена на рисунке 1 а.
Результаты измерений занесём в таблицу 1.
Принципиальная схема для транзистора структуры n-p-n для исследования выходных характеристик с (ОБ) приведена на рисунке 2.
Сни
210 руб.
Титков А.Ф. (сост.) Рынок ценных бумаг. Словарь основных терминов и понятий
GnobYTEL
: 11 марта 2012
Екатеринбург: УрАГС, 2007 г. – 100 с.
В данном словаре наиболее полно представлены термины и определения курса "Рынок ценных бумаг" для высших учебных заведений.
3 руб.
Розроблення та вдосконалення системи планування на підприємстві
Qiwir
: 16 августа 2013
1) Як називається наука про планування?
1. Планологія.
2. Методологія.
3. Планотогія.
2) Першим навчальним посібником з планування вважається?
1. «Книга майбутнього»
2. «Книга змін»
3. «Книга дій»
3) Планологію — науку про …?
1. Планування
2. Маркетинг
3. Бізнес планування
4) Чи розглядається планування як одна з функцій управління?
1. Так
2. Ні
5) Цілі функціонування підприємства — це чітко й однозначно сформульовані …., подані у вигляді переліку основних показників, які підлягають д
10 руб.