Контрольная работа по дисциплине: Дискретная математика Вариант 4
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант 04
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (C\B) = (A C) \ B б) A (B C)=(A B) (A C).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,2),(b,4),(c,3),(c,2)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x2 + x = y2 + y}.
No4 Доказать утверждение методом математической индукции:
(10n – 1) кратно 9 для всех целых n 0.
No5 Восемь студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 15 или 25? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x·y3·z4, b=x3·y·z2, c=x2·y4 в разложении (5·x+2·y+3·z2)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 4·an+2 + 7·an+1 + 3·an = 0· и начальным условиям a1=2, a2=1.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v4 до остальных вершин графа, используя алгоритм Дейкстры.
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) (C\B) = (A C) \ B б) A (B C)=(A B) (A C).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(b,2),(b,4),(c,3),(c,2)}; P2 = {(1,1),(1,2),(2,2),(3,3),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x2 + x = y2 + y}.
No4 Доказать утверждение методом математической индукции:
(10n – 1) кратно 9 для всех целых n 0.
No5 Восемь студентов должны сдавать зачет по трем предметам: физике, английскому языку и истории. Все зачеты назначены на одно время и каждый может сдавать только один зачет, поэтому студентам нужно распределиться на группы. Сколькими способами это можно сделать? Сколькими способами они могут разместиться после зачета за двумя совершенно одинаковыми столиками (не менее чем по двое) для того, чтобы отпраздновать результаты?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 15 или 25? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x·y3·z4, b=x3·y·z2, c=x2·y4 в разложении (5·x+2·y+3·z2)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению 4·an+2 + 7·an+1 + 3·an = 0· и начальным условиям a1=2, a2=1.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v4 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
Комментарии:
Оценка: Отлично
Дата оценки: 04.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 04.11.2022
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине: дискретная математика. Вариант 4
nlv
: 15 сентября 2018
I. Задано универсальное множество U и множества A, B, C и D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По
60 руб.
Контрольная работа по дисциплине ''Дискретная математика". Вариант №4
hikkanote
: 6 апреля 2017
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
4. U={2,4,6,8,10}
A={2,4};
B={4,6,8};
C={2,6,10};
D={4}.
а)A∩D ̅={2}
б)(A∪C) ̅={8}
в)(B∖C)∩D={4}
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
4. “Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой
250 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №4
Учеба "Под ключ"
: 9 ноября 2016
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. (см. скрин)
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКН
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №4
lfesta
: 21 января 2015
1. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {2,4,6,8,10}
А = {2,4}; В = {4,6,8}; С = {2,6,10}; D = {4}
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
3. Для булевой функции f(x,y,z) найти методом преобра
90 руб.
Контрольная работа № 1 по дисциплине: «Дискретная математика». Вариант №4
ДО Сибгути
: 22 марта 2016
Задача №1
Задано универсальное множество и множества. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = {2,4,6,8,10},
A = {2,4}, , , .
а) ; б) ; в) ; г) ; д) .
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: “Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
Задача №3
Для булевой функции найти методом
150 руб.
Дискретная математика вариант 4
BOND
: 10 октября 2009
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
100 руб.
Экзамен по дисциплине: Дискретная математика. Вариант №4
Norff
: 16 января 2021
Билет No 12
Факультет ИВТ (ДО) Курс 1 Семестр 2
Дисциплина Дискретная математика
1) Размещения и сочетания с повторениями – дать определение, охарактеризовать общие черты и различия; привести формулы для расчета числа вариантов. Привести примеры.
2) Виды графов – пустой, полный, двудольный, сети. Определить и проиллюстрировать операцию стягивания ребер в графе.
3) Используя принцип математической индукции, доказать утверждение: (n3 + 11·n) кратно 6 для всех целых n 2.
4) Найти упрощенн
30 руб.
Контрольная работа. Дискретная математика. Вариант 4.
Philius
: 8 мая 2017
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
50 руб.
Другие работы
Детали машин. Курсовой проект. Редуктор. Узел выходного вала. Вариант 8
konstruktor_ns
: 27 марта 2018
ОГлавление работы:
Введение
1 Кинематический расчет привода
2 Расчет допускаемых напряжений зубьев
3 Проектный расчет передачи
4 Проверочный расчет передачи
4.1 Проверочный расчет зубьев на контактную прочность
4.2 Проверочный расчет прочности зубьев на изгиб
5 Расчет тихоходного вала
5.1 Проектный расчет быстроходного вала
5.2 Проектный расчет тихоходного вала
5.3 Эскизная компоновка редуктора
5.4 Проверочный расчет тихоходного вала
6 Подбор подшипников тихоходного вала
7 Расчет шпоночных
390 руб.
Проблемы воспитания в Германии
MagicT
: 2 января 2017
Реферат для сдачи кандидатского минимума
по иностранному языку (немецкий)
Пожалуй, нет такой семьи, где никогда не было бы разногласий между родителями. Уже это повергает детей в беспокойство. Значительно большими являются для детей последствия, когда родителям не удаётся установить гармоничные супружеские отношения, спра-виться с ежедневными требованиями семейной жизни и поддерживать друг друга в становлении их личностей – причин этого мы здесь не касаемся – и дело доходит до глубоких к
15 руб.
Комплекс оборудования для гидроразрыва пласта ГРП с усовершенствованием конструкции насосной установки УН1-630-700А-Оборудование для капитального ремонта, обработки пласта, бурения и цементирования нефтяных и газовых скважин-Курсовая работа
leha.se92@mail.ru
: 18 декабря 2018
Комплекс оборудования для гидроразрыва пласта ГРП с усовершенствованием конструкции насосной установки УН1-630-700А-Текст пояснительной записки выполнен на Украинском языке вы можете легко его перевести на русский язык через Яндекс Переводчик ссылка на него https://translate.yandex.ru/?lang=uk-ru или с помощью любой другой программы для перевода-Оборудование для капитального ремонта, обработки пласта, бурения и цементирования нефтяных и газовых скважин-Курсовая работа
ТЕМА ДИПЛОМНОГО ПРОЕКТА
25.
1293 руб.
Контрольная работа.Цепи и сигналы электросвязи
Liya38
: 20 мая 2014
Задача 1.
1. Дайте определение понятиям: информация, сообщение, сигнал. Перечислите формы представления сигнала.
Начертите временные диаграммы периодических сигналов прямоугольной формы с параметрами, заданными в таблице 1. Определите спектральный состав и начертите спектральные диаграммы для заданных сигналов.
Поясните зависимость ширины спектра периодической последовательности прямоугольных импульсов от длительности импульса.
Задача 2.
1. Сформулируйте теорему В.А. Котельникова и поясните её
280 руб.