Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №4
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i,i=1,2,...,14;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos((x+10c)/c),c=N+1, N – последняя цифра пароля.
=========================================
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)
где с=0.01N, N– последняя цифра пароля.
=========================================
Лабораторная работа No3. Численное дифференцирование
Задание к работе:
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти f^' (x) с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
По составленной таблице вычисляет приближенные значения f^' (x) в точках x_i=c+ih,i=1,2,...,15по формуле центральной разностной производной;
выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sinc x,c=N+1, где N – последняя цифра пароля.
==========================================
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
по сформированной таблице с помощью линейной интерполяции вычисляет приближенные значения функции в точках x_i=c+0.6h⋅i,i=1,2,...,14;
выводит таблицу точных и приближенных значений функции (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения функции).
В качестве функции взятьf(x)=c^3 Cos((x+10c)/c),c=N+1, N – последняя цифра пароля.
=========================================
Лабораторная работа No2
Задание к работе:
Привести систему к виду, подходящему для метода простой итерации (если Ваша фамилия начинается с гласной буквы) или метода Зейделя (если Ваша фамилия начинается с согласной буквы).
Рассчитать аналитически количество итераций для решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом по заданию с точностью до 0.0001 для каждой переменной.
Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
{((0.95+с)x_1+(0.26+c)x_2+(-0.17+c)x_3+(0.27+c)x_4=2.48@(-0.15+с)x_1+(1.26+c)x_2+(0.36+c)x_3+(0.42+c)x_4=-3.16@(0.26+с)x_1+(-0.54+c)x_2+(-1.76+c)x_3+(0.31+c)x_4=1.52@(-0.44+с)x_1+(0.29+c)x_2+(-0.78+c)x_3+(-1.78+c)x_4=-1.29)
где с=0.01N, N– последняя цифра пароля.
=========================================
Лабораторная работа No3. Численное дифференцирование
Задание к работе:
Рассчитать оптимальный шаг для построения таблицы значений функции, которая позволит с наименьшей погрешностью вычислить значения f^' (x) по приближенной формуле центральной разностной производной, если табличные значения функции вычислены с точностью 0.0001.
Найти погрешность, с которой можно найти f^' (x) с вычисленным в пункте a) оптимальным шагом.
Написать программу, которая
выводит таблицу значений функции с рассчитанным оптимальным шагом hна интервале [c-h, c+16h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округленное до 0.0001 значение функции);
По составленной таблице вычисляет приближенные значения f^' (x) в точках x_i=c+ih,i=1,2,...,15по формуле центральной разностной производной;
выводит таблицу точных и приближенных значений производной (таблица должна содержать 3 столбца: значенияxi из пункта б) и соответствующие им приближенные и точные значения производной).
В качестве функции взятьf(x)=1/c Sinc x,c=N+1, где N – последняя цифра пароля.
==========================================
Дополнительная информация
Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки: 01.12.2022г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 01.12.2022г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Лабораторные работы №1-3 по дисциплине: Вычислительная математика. Вариант 4
Roma967
: 11 января 2025
Лабораторная работа №1
«Линейная интерполяция»
Задание на лабораторную работу
1. Рассчитать h - шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
1200 руб.
Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 17 мая 2023
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округлен
500 руб.
Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 21 ноября 2022
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
1. Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему ок
500 руб.
Курсовая и Лабораторные работы 1-3 по дисциплине: Вычислительная математика. Вариант №4
IT-STUDHELP
: 1 декабря 2022
Лабораторная работа No1. Линейная интерполяция.
Задание на лабораторную работу
Рассчитать h– шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
Написать программу, которая
выводит таблицу значений функции с рассчитанным шагом hна интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округлен
800 руб.
Лабораторные работы №№1-3 по дисциплине Вычислительная математика
aker
: 26 апреля 2021
Лабораторные работы 1-3 по дисциплине Вычислительная математика Вариант 1
500 руб.
Вычислительная математика лабораторная работа 1 вариант 4
svladislav987
: 23 августа 2023
Лабораторная работа No1
Линейная интерполяция
Присылаемый на проверку архив должен содержать 2 файла:
файл отчета, содержащий титульный лист, условие задачи, результаты аналитических расчетов, формулы используемых методов, исходный текст программы (с указанием языка реализации) и результаты работы программы (можно в виде скриншотов);
файл с исходным текстом программы (программу можно писать на любом языке программирования).
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f
300 руб.
Вычислительная математика Лабораторная работа №1. Вариант №4
tpogih
: 13 сентября 2014
Условие задачи:
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблиц
40 руб.
Вычислительная математика. Лабораторная работа №1-5. Вариант №4
s1nd
: 3 июля 2014
No 1
Условия лабораторной работы:
Известно, что функция удовлетворяет условию при любом x.
Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в то
150 руб.
Другие работы
Техническая термодинамика и теплотехника Тула Часть 2 Задача 4 Вариант 76
Z24
: 31 октября 2025
Определить удельный лучистый тепловой поток q (Вт/м2) между двумя параллельно расположенными плоскими стенками, имеющими температуру t1 и t2 и степени черноты ε1 и ε2, если между ними нет экрана. Определить q при наличии экрана со степенью черноты с обеих сторон εэ.
200 руб.
Расчетная часть- Расчет вихревого насоса ВНН5-79-2400-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
lelya.nakonechnyy.92@mail.ru
: 17 января 2017
Расчетная часть- Расчет вихревого насоса ВНН5-79-2400: Определение основных параметров, Выбор базовой модели ВНН и его техническая характеристика, Выбор двигателя и кабеля, Определение диаметра насоса, Определение геометрических размеров ступени, Определение длины корпуса насоса-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
553 руб.
Основы радиосвязи и телевидения. Экзамен. Билет №14
merzavec
: 7 апреля 2016
1. Какой физический смысл имеют основные цвета?
2. Перечислите основные особенности системы цветного телевидения NTSC.
40 руб.
Волоконно-оптические системы передачиОтвет на билет №2
adile
: 19 ноября 2020
1. Классификация оптических волокон.
2. Характеристики затухания волоконных световодов.
3. Спектральные диапазоны длин волн для одномодовых стекловолокон.
4. Волокна MCF и FMF.
5. Оценка отношения сигнал/шум на выходе фотоприёмного
устройства с интегрирующим и трансимпедансным усилителем.
100 руб.