Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №11
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Контрольная работа
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Билет No11
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 3 6 7 5 0
3 0 2 3 2 0
6 2 0 7 4 1
7 3 7 0 1 5
5 2 4 1 0 4
0 0 1 5 4 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×6],M2[6×2],M3[2×4],M4[4×7],M5[7×5]
===============================================
по дисциплине:
«Теория сложности вычислительных процессов и структур»
Билет No11
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 3 6 7 5 0
3 0 2 3 2 0
6 2 0 7 4 1
7 3 7 0 1 5
5 2 4 1 0 4
0 0 1 5 4 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц: M1[5×6],M2[6×2],M3[2×4],M4[4×7],M5[7×5]
===============================================
Дополнительная информация
Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки:05.12.2022г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки:05.12.2022г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №11
rt
: 28 февраля 2015
Задания:
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 3 7 8
2 0 4 6 12
3 4 0 16 17
7 6 16 0 18
8 12 17 18 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Экзаменационный тест по дисциплине "Теория сложностей вычислительных процессов и структур" (Билет №11)
Greenberg
: 14 февраля 2012
Задания:
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 3 7 8
2 0 4 6 12
3 4 0 16 17
7 6 16 0 18
8 12 17 18 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
190 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №2
holm4enko87
: 15 мая 2025
илет №2
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 5 0 1 7 1
5 0 2 3 2 4
0 2 0 5 3 1
1 3 5 0 4 5
7 2 3 4 0 3
1 4 1 5 3 0
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость
270 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
teacher-sib
: 23 февраля 2025
Билет №12
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №9
uliya5
: 14 апреля 2024
1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
2. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного
300 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
IT-STUDHELP
: 20 апреля 2023
Билет №4
1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Номер товара, i mi сi M
1 7 21 25
2 3 8
3 8 18 52
2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
380 руб.
Другие работы
Теория информации. Контрольная работа
Efimenko250793
: 4 февраля 2014
Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину ко
100 руб.
Структуры и алгоритмы обработки данных» (часть 2-я). 4-й вариант
pbv
: 12 февраля 2016
1.Хранящуюся в файле базу данных (файл определяется вариантом) загрузить в оперативную память компьютера и построить дерево поиска заданного типа, упорядочивающее данные сначала по первому полю, затем по второму и т.д.
2.Провести поиск по ключу в построенном дереве поиска. Ключ поиска для любого варианта – 3 символа русского алфавита. Провести несколько поисков в дереве с различными ключами для проверки работоспособности программы, одним из ключей поиска должны быть три буквы ФИО студента. (
100 руб.
Разрезы. Вариант 9
Laguz
: 28 января 2025
Лист 4 Разрезы
По двум видам детали построить третий. Выполнить разрезы. Проставить размеры. Изобразить деталь в изометрии с вырезом четверти
Сделано в компас 21, дополнительно чертеж и 3д модель сохранены в 19 компас и джпг
100 руб.
Теплотехника СФУ 2017 Задача 1 Вариант 10
Z24
: 30 декабря 2026
Смесь, состоящая из М1 киломолей углекислого газа и М2 киломолей окиси углерода с начальными параметрами р1 = 5 МПа и Т1 = 2000 К, расширяется до конечного объема V2 = εV1. Расширение осуществляется по изотерме, по адиабате, по политропе с показателем n. Определить газовую постоянную смеси, её массу и начальный объем, конечные параметры смеси, работу расширения, теплоту процесса, изменение внутренней энергии, энтальпии и энтропии. Дать сводную таблицу результатов и анализ ее. Показать процессы в
280 руб.