Контрольная и Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon
material.view.file_icon input.txt
material.view.file_icon KONTR.EXE
material.view.file_icon KONTR.PAS
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon LAB1.EXE
material.view.file_icon lab1.pas
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon LAB2.EXE
material.view.file_icon LAB2.PAS
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon LAB3.EXE
material.view.file_icon LAB3.PAS
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Лабораторная работа №1
по дисциплине:
«Теория сложности вычислительных процессов и структур»

Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.

Вариант 8
0 14 9 3 22 17 16 0 14 18
14 0 19 0 2 0 11 14 21 20
9 19 0 17 20 22 4 4 8 9
3 0 17 0 11 3 20 12 10 15
22 2 20 11 0 14 19 17 15 19
17 0 22 3 14 0 0 6 10 0
16 11 4 20 19 0 0 3 11 9
0 14 4 12 17 6 3 0 7 4
14 21 8 10 15 10 11 7 0 7
18 20 9 15 19 0 9 4 7 0

==========================================

Лабораторная работа №2
по дисциплине:
«Теория сложности вычислительных процессов и структур»

Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.

Вариант 8
0 11 0 0 1 1 4 0 0 3
11 0 5 6 6 8 5 11 4 8
0 5 0 3 9 6 6 9 2 11
0 6 3 0 7 6 3 7 11 8
1 6 9 7 0 3 3 9 9 0
1 8 6 6 3 0 9 3 1 7
4 5 6 3 3 9 0 3 7 10
0 11 9 7 9 3 3 0 0 3
0 4 2 11 9 1 7 0 0 10
3 8 11 8 0 7 10 3 10 0

==========================================

Лабораторная работа №3
по дисциплине:
«Теория сложности вычислительных процессов и структур»

Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.

Вариант 8
Номер товара, i mi сi M
1 8 41 
2 11 56 57
3 7 28 
4 6 32 

==========================================
==========================================
==========================================

Контрольная работа
по дисциплине:
«Теория сложности вычислительных процессов и структур»

Задание

Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
0 8 6 2 5 9 3 6 4 7 3 9 7 2
1 6 9 4 8 9 3 5 6 8 7 2 6 8
2 5 3 2 6 9 7 4 9 2 6 7 4 7
3 4 6 6 9 7 5 6 4 2 9 3 7 5
4 9 5 2 8 5 6 9 8 3 4 7 9 2
5 5 8 3 4 9 5 7 6 8 4 9 2 6
6 6 3 9 4 9 4 8 6 4 7 9 9 6
7 2 2 9 6 9 3 7 7 9 8 3 4 2
8 5 6 8 7 2 3 2 9 4 4 4 8 5 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 6 5 5 9 7 8 9 8 3 2 8 4 6
==============================================

Дополнительная информация

Проверил(а): Галкина Марина Юрьевна
Оценка: Отлично
Дата оценки: 05.12.2022г.

Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Контрольная и Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №6
Лабораторная работа №1 Задание Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла. Вывести ребра остова минимального веса в порядке их присоединения и вес остова. Номер варианта выбирается по последней цифре пароля. Вариант 6 0 0 24 0 14 16 24 13 16 0 0 0 9 23 6 26 19 0 10 27 24 9 0 14 5 23 22 1
User IT-STUDHELP : 16 ноября 2022
850 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №6 promo
Лабораторная работа № 3 по дисциплине Теория сложности вычислительных процессов и структур. Вариант 8
Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 8 Вершина 5.
User Некто : 16 сентября 2018
50 руб.
Лабораторная работа №3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
Задание Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 8 Вершина 5. 0 0 3 7 8 10 1 2 0 4 6 12 19 9 3 4
User Amor : 28 октября 2013
250 руб.
promo
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Лабораторные работы №1-3 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант 8
Лабораторная работа №1 Задание Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла. Вывести ребра остова минимального веса в порядке их присоединения и вес остова. Номер варианта выбирается по последней цифре пароля. Вариант 8 0 14 9 3 22 17 16 0 14 18 14 0 19 0 2 0 11 14 21 20 9 19 0 17 20 22 4
1200 руб.
promo
Лабораторные работы 1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №8
Лабораторная работа №1 по дисциплине: «Теория сложности вычислительных процессов и структур» Задание Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла. Вывести ребра остова минимального веса в порядке их присоединения и вес остова. Номер варианта выбирается по последней цифре пароля. Вариант 8
User IT-STUDHELP : 5 декабря 2022
600 руб.
promo
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 8.
Задача о перемножении матриц. Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант №8 М1[4x8], M2[8x4], M3[4x7], М4[7x2], M5[2x6], M6[6x3], M7[3x5], M8[5x9].
User zhekaersh : 6 марта 2015
70 руб.
Лабораторная работа №4 по дисциплине: Системное программное обеспечение. Вариант №3
Лабораторная работа №4 «ЛОГИЧЕСКИЕ ОПЕРАЦИИ» Цель работы: Научиться использовать команды логических операций. Задание: Дан массив из 8 байт. Выполнить последовательное логическое умножение всех элементов массива. Результат занести в DX.
User Учеба "Под ключ" : 13 октября 2017
200 руб.
Контрольная работа по современным проблемам теплоэнергетике и теплотехнике
Задача 1. Расчёт воздухоподогревателя; Задача 2. Энергосбережение в теплотехнологиях и теплоснабжении; Задача 3. Расчёт процесса сушки; Задача 4. Экономия энергии котельных и на ТЭЦ промышленных предприятий
User Odin2010 : 7 мая 2012
Лабораторные работы №№1-3 по дисциплине: Теория автоматов. Вариант №2
Лабораторная работа No1 1 Задание 1. Изучить теорию. 2. Составить графическое представление машины Тьюринга. 3. Составить табличное представление машины Тьюринга. 4. Составить логическое представление машины Тьюринга. 5. Составить схему алгоритма моделирования. 6. Написать программу. 7. Исследовать работоспособность модели при различных вариантах исходных данных, обеспечивающих проверку работы всех ветвей программы. 8. Провести анализ полученных результатов и сделать выводы по работоспособнос
User IT-STUDHELP : 18 ноября 2021
1200 руб.
Лабораторные работы №№1-3 по дисциплине: Теория автоматов. Вариант №2 promo
up Наверх