Теория сложности вычислительных процессов и структур, экзамен, билет №7
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
Дополнительная информация
2023, ДО СИБГУТИ, оценка зачет
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7.
sibguter
: 7 апреля 2019
Билет №7
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 4 0 0 5 3
4 0 7 2 4 4
0 7 0 6 1 5
0 2 6 0 4 7
5 4 1 4 0 3
3 4 5 7 3 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
М1[4x8], М2[8x4], М3[4x5], М4[5x3], М5[3x6]
109 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tpogih
: 2 мая 2015
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 3 7 8
2 0 4 6 12
3 4 0 16 17
7 6 16 0 18
8 12 17 18 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7
рулетка
: 25 января 2015
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин...
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
200 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tefant
: 4 июля 2013
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
299 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №7.
teacher-sib
: 31 октября 2017
Билет №7
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
Матрица:
2. Оптимальным образом расставить скобки при перемножении матриц
M1[8 3], M2[3 5], M3[5 9], M4[9 2], M5[2 4]
110 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Другие работы
Механизм ручного привода 01.003
coolns
: 19 января 2020
Механизм ручного привода 01.003 сборочный чертеж
Механизм ручного привода 01.003 спецификация
Вал 01.003.001
Маховик 01.003.002
Корпус подшипника 01.003.003
Пружина 01.003.004
Кольцо 01.003.005
Втулка 01.003.006
Колесо зубчатое 01.003.007
Полумуфта левая 01.003.008
Полумуфта правая 01.003.009
Крышка 01.003.010
Стакан 01.003.011
Для поворота вала машины от руки служит механизм ручного привода. Он состоит из маховика 2, закрепленного штифтом 17 на валу 1, двух кулочковых полумуфт 8 и 9, из которы
400 руб.
Дисциплина: Цифровые системы передачи Контрольная работа вариант 02
marucya
: 18 июня 2015
1. Задание на контрольную работу
Объединяются 220 каналов тональной частоты и 8 каналов звукового вещания первого класса в системе с временным разделением каналов и 8-ми разрядной импульсно-кодовой модуляцией. Рассчитать временные и частотные характеристики, нарисовать структурную схему объединения и разделения каналов с учетом плезиохронной цифровой иерархии. Изобразить временные и спектральные характеристики сигналов во всех точках тракта с указанием рассчитанных значений длительностей, перио
150 руб.
Контрольная работа по физике № 1. 1-й семестр. Вариант №0
spectra
: 16 марта 2014
1. Шлюпка длиной 3 м и массой 120 кг стоит на спокойной воде. На носу и корме находятся два рыбака массами 60 кг и 90 кг соответственно. На сколько сдвинется шлюпка относительно воды, если рыбаки поменяются местами?
2. Шар массой 2 кг сталкивается с покоящимся шаром большей массы и при этом теряет 40 % своей кинетической энергии. Вычислите массу большего шара. Удар считать абсолютно упругим, прямым, центральным.
3. Релятивистский протон обладал кинетической энергией, равной энергии
400 руб.
Контрольная работа. Основы аудита. Вариат №2
rtt20
: 11 ноября 2014
Задание 1
Организация «Гражданское общество» получала в течение года благотворительные взносы от юридических и физических лиц и направляла их на поддержку отдельных региональных программ телевидения и отдельным образовательным учреждениям в качестве благотворительной помощи. Руководство организации по окончании отчетного года отказалось от проведения аудиторской проверки.
Установите, не нарушает ли решение руководства требования законодательства об обязательности ежегодных аудиторских проверок.
100 руб.
Комментарии (1)