Теория сложности вычислительных процессов и структур, экзамен, билет №7
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
Дополнительная информация
2023, ДО СИБГУТИ, оценка зачет
Похожие материалы
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7.
sibguter
: 7 апреля 2019
Билет №7
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
0 4 0 0 5 3
4 0 7 2 4 4
0 7 0 6 1 5
0 2 6 0 4 7
5 4 1 4 0 3
3 4 5 7 3 0
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
М1[4x8], М2[8x4], М3[4x5], М4[5x3], М5[3x6]
109 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tpogih
: 2 мая 2015
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 2 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
0 2 3 7 8
2 0 4 6 12
3 4 0 16 17
7 6 16 0 18
8 12 17 18 0
2. Оптимальным образом расставить скобки при перемножении матриц
М1[4x7], M2[7x3], M3[3x9], М4[9x6], M5[6x3]
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №7
рулетка
: 25 января 2015
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин...
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
200 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №7
tefant
: 4 июля 2013
Билет №7
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин
2. Оптимальным образом расставить скобки при перемножении матриц
М1[8x3], M2[3x5], M3[5x9], М4[9x2], M5[2x4]
299 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №7.
teacher-sib
: 31 октября 2017
Билет №7
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
Матрица:
2. Оптимальным образом расставить скобки при перемножении матриц
M1[8 3], M2[3 5], M3[5 9], M4[9 2], M5[2 4]
110 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
1231233
: 15 апреля 2011
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Другие работы
Зачет Схемотехника телекоммуникационных устройств»(ч.1)
Андрей124
: 31 августа 2019
. Определить выходное напряжение на верхней частоте усилителя, если известно, что Мв = 4 дБ, Кf ср = 80, Uвх = 1 мВ.
2. Определить глубину ООС, если до введения ОС К*f ср= 40дБ;UИСТ = 10 мВ; UВЫХ fн = 0,8 В, а после введения ОС коэффициент частотных искажений составил МН ОС = 1,05.
3. Как влияет малая емкость эмиттера в схеме с эмиттерной стабилизацией на амплитудно-частотную характеристику и частотные искажения?
4. Какова физическая интерпретация операции дифференцирования? Какую форму будет им
35 руб.
Приспособление для контроля радиального биения фланца (сборочный чертеж)
maobit
: 5 июня 2018
2.3 Расчёт и проектирование приспособления для контроля радиального биения
Данное контрольное приспособление является специальным. Оно предназначено для контроля радиального биения наружной цилиндрической поверхности фланца Ø250-0,115 относительно оси конического отверстия.
Контрольное приспособление имеет простую конструкцию. Устанавливать деталь в приспособление удобно. Всё это позволяет правильно и точно производить измерения.
Левый торец фланца является установочной поверхностью. Детал
390 руб.
КОНТРОЛЬНАЯ РАБОТА№1 по Информатике
Богарт
: 5 апреля 2017
ВВЕДЕНИЕ
Программа Micro-Cap (Microcomputer Circuit Analysis Program) впервые появилась в 1981 году как результат разработки фирмы Spectrum Software и быстро завоевала популярность, потому что не предъявляла высоких требований к компьютерам. С тех пор программа непрерывно совершенствовалась, приобретая новый интерфейс и улучшенные возможности анализа схем и визуализации результатов. На сегодняшний день последней разработкой программы является Micro-Cap 9. Приведем перечень основных характерист
199 руб.
Пересечение тел плоскостями. Вариант 4
Laguz
: 7 ноября 2025
Если есть какие-то вопросы или нужно другой вариант, пишите.
600 руб.
Комментарии (1)