Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №3
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №3
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле:
S1(i) = 1 + № варианта.
N = 3.
Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
Таблица 2 – Временные отчеты сигналов S1 и S2
№ отсчета 1 2 3 4 5 6 7
Сигнал Sвх1(i)
Прямоугольн импульс 4 4 4 4 4 4 4
Сигнал Sвх2(i)
Приподнятый косинус 0,147*А 0,5*А 0,854*А 1*А 0,854*А 0,5*А 0,147*А
0,588 2,000 3,416 4,000 3,416 2,000 0,588
А = (1+№ варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
------------------------------------------------------------------------------
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
1. Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
2. Величина относительного доверительного интервала определяется по формуле .
3. Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
------------------------------------------------------------------------------
Вопрос: Математические основы оптимизации сигналов для телекоммуникационных систем
------------------------------------------------------------------------------
Оглавление:
Контрольная работа
Задача №1
Задача №2
Математические основы оптимизации сигналов для телекоммуникационных систем
Список используемой литературы
=============================================
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет обладать максимальным отношением энергии сигнала к спектральной плотности белого шума, действующего в кабельной линии. Как известно из теории потенциальной помехоустойчивости, при этом будет обеспечена минимальная вероятность ошибки на выходе приемника системы связи.
Анализируется сигнал в виде прямоугольного импульса, заданного семью одинаковыми по величине отсчетами. Величины отсчетов прямоугольного импульса рассчитываются, исходя из номера варианта темы контрольной работы по формуле:
S1(i) = 1 + № варианта.
N = 3.
Очевидно, что все отсчеты прямоугольного импульса одинаковые.
Вторым анализируется сигнал в виде «приподнятого косинуса». Он отображается также семью отсчетами (имеет такую же длительность, как и прямоугольный импульс). Его отсчеты представлены в следующей таблице:
Таблица 2 – Временные отчеты сигналов S1 и S2
№ отсчета 1 2 3 4 5 6 7
Сигнал Sвх1(i)
Прямоугольн импульс 4 4 4 4 4 4 4
Сигнал Sвх2(i)
Приподнятый косинус 0,147*А 0,5*А 0,854*А 1*А 0,854*А 0,5*А 0,147*А
0,588 2,000 3,416 4,000 3,416 2,000 0,588
А = (1+№ варианта)
Для решения этой задачи вначале необходимо рассчитать формы этих сигналов на выходе каналов связи. Для расчета временных отсчетов выходного сигнала воспользуемся численным методом решения интеграла свертки, описанным в главе 3 учебного пособия. Заменяем интеграл свертки эквивалентным матричным выражением (смотри подраздел 3.4). Следует обратить внимание, что число строк в матрице оператора канала G должно быть равно количеству временных отсчетов входного сигнала, а количество столбцов – на единицу меньше суммы количества отсчетов входного сигнала и количества отсчетов импульсной реакции.
------------------------------------------------------------------------------
Задача №2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация для решения этой задачи изложена в главе 8 учебного пособия [1].
Исходные данные для расчета:
1. Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
2. Величина относительного доверительного интервала определяется по формуле .
3. Величина доверительной вероятности pp = 0,9.
Рекомендуется самостоятельно исследовать, как зависит минимально необходимое количество испытаний имитационной модели от доверительной вероятности, доверительного интервала и грубой оценки вероятности ошибки. Результаты этих исследований приводятся в контрольной работе по желанию.
------------------------------------------------------------------------------
Вопрос: Математические основы оптимизации сигналов для телекоммуникационных систем
------------------------------------------------------------------------------
Оглавление:
Контрольная работа
Задача №1
Задача №2
Математические основы оптимизации сигналов для телекоммуникационных систем
Список используемой литературы
=============================================
Дополнительная информация
Проверил(а): Лебедянцев Валерий Васильевич
Оценка: Отлично
Дата оценки: 20.05.2023г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Отлично
Дата оценки: 20.05.2023г.
Помогу с вашим вариантом, другой дисциплиной, онлайн-тестом, либо сессией под ключ.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Математическое моделирование телекоммуникационных устройств и систем
Dirol340
: 25 января 2021
Задача No1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача No2
Необходимо определить количество испытаний имитационной модели системы передачи данных для оценки вероятности ошибки на ее выходе при заданных доверительном интервале и доверительной вероятности. Необходимая информация дл
330 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант 05
xtrail
: 15 августа 2024
Вариант: 05
ЗАДАЧА 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 - Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
800 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №2
IT-STUDHELP
: 12 декабря 2023
Вариант №2
Задача №1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он будет
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №26
IT-STUDHELP
: 12 декабря 2023
Вариант №26
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отсчеты импульсной реакции g(t) кабельной линии
№ отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который будет обладать минимальным затуханием энергии в кабельной линии. При этом он буде
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. ВАРИАНТ № 01
f-akho
: 14 октября 2023
Задача 1
Вариант 1, значит A=1, величины отсчетов прямоугольного импульса вычисляются так
S(i)=1+A= 2
No отсчета импульсной реакции 1 2 3 4 5
Величина отсчета 0,2 0,8 0,4 0,24 0,08
Задача 2
Исходные данные для расчета:
Грубая оценка вероятности ошибки, полученная при малом количестве испытаний равна 0,001.
Величина относительного доверительного интервала определяется по формуле 〖ε_p〗^*=0.2.
Величина доверительной вероятности pp = 0,9.
Теоретическая часть
Математические методы эффективног
500 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №01
IT-STUDHELP
: 3 октября 2023
Вариант No01
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отсчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №18
IT-STUDHELP
: 3 октября 2023
Вариант No18
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который б
600 руб.
Контрольная работа по дисциплине: Математическое моделирование телекоммуникационных устройств и систем. Вариант №4
IT-STUDHELP
: 3 октября 2023
Вариант No4
------------------------------------------------------------------------------
Задача 1
Имеется кабельная линия связи с известной импульсной реакцией, заданной следующей последовательностью временных отсчетов. Эти временные отсчеты представлены в следующей таблице:
Таблица 1 – Временные отчеты импульсной реакции g(t) кабельной линии
No отсчета импульсной реакции g1 g2 g3 g4 g5
Величина отсчета g(i) 0,2 0,8 0,4 0,24 0,08
Из двух вариантов сигналов необходимо выбрать тот, который бу
600 руб.
Другие работы
Введение в бизнес
ostah
: 24 сентября 2013
1.1.Основы бизнеса.
Вы узнаете:
- с чего начинается бизнес?
- кто может заниматься бизнесом?
- что такое предпринимательство?
С чего начинается бизнес? С себя. Да-да, самая первая проблема – это вы. А точнее, готовность на самом деле к тому, чтобы заняться предпринимательством. Это ведь совсем особый образ жизни, предполагающий готовность принимать самостоятельные решения, рисковать, действовать быстро и работать много, куда больше, чем восемь часов в день. Далеко не каждый способен на
5 руб.
Определение жесткости воды комплексонометрическим методом
wizardikoff
: 9 февраля 2012
Содержание
Введение
1. Технологическая часть
1.1 Вода в промышленности
1.. Показатели качества воды. Водоподготовка
1.3 Жесткость воды
1.4 Методы определения жесткости
1.4.1 Обзор возможных методов
1.4.2 Обоснование комплексонометрического метода
1.5 Теоретические основы комплексонометрического метода
1.6 Методика определения жесткости воды комплексонометрическим методом
1.6.1 Сущность метода
1.6.2 Отбор проб
1.6.3 Реактивы и оборудование
1.6.4 Выполнение определения
1.6.5 Обработка результат
Экзаменационная работа по дисциплине: Направляющие системы электросвязи. Билет №17
gumar75
: 24 декабря 2013
1. Классификация оптических кабелей. Типовые конструкции кабелей
2. Структура и канальные планы систем WDM.
120 руб.
Экзамен по вычислительной математике . Билет №1
ru0lr
: 28 октября 2014
1. Вычислите и определите абсолютную и относительную погрешности результата.
2. Выполните 3 шага метода простой итерации для системы линейных уравнений и оцените погрешность полученного решения.
3. Найдите методом Симпсона, разбив интервал интегрирования на 10 частей. Оцените погрешность полученного значения.
80 руб.