Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5

Состав работы

material.view.file_icon
material.view.file_icon ЛР1.docx
material.view.file_icon ЛР2.docx
material.view.file_icon ЛР3.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 05

Выбор варианта:
NC = 5
Тип классификатора:
NВ = (NC mod 3) + 1 = 3
3. Метод парзеновского окна с относительным размером окна.

Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1
1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1]

Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.

1  Результаты тестирования
Надёжность предсказания реализованного классификатора на тестовой выборке составила 94.39 %.

=============================================

Лабораторная работа 2. «Решающие деревья»

1  Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) точность предсказания в
процентах
1 1 2 83,9%
2 5 10 93,2%
3 50 100 98,8%
4 100 200 99,0%
Таблица 2. Результаты M запусков леса
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) Количество деревьев
(n_estimators) точность предсказания в
процентах
1 1 1 2 77,7%
2 5 5 10 93,4%
3 50 50 100 96,9%
4 100 100 200 99,9%

2  Параметры дерева, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 200
3  Параметры леса, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 100
Количество деревьев (n_estimators): 200

=============================================

Лабораторная работа 3. «Регрессия»

1  Результаты работы программы
Таблица 1. Результаты 10 запусков
Номер запуска Процент правильности предсказания типа статьи
1 98.7 %
2 98.5 %
3 98.7 %
4 98.5 %
5 98.6 %
6 98.6 %
7 98.3 %
8 98.8 %
9 98.7 %
10 98.6 %
Среднее значение предсказания типа статьи исходя из 10 запусков: 98,6 %.

=============================================

Дополнительная информация

Проверил(а): Ракитский Антон Андреевич
Оценка: Зачет
Дата оценки: 19.06.2023г.

Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Контрольная работа Вариант No5 Выбор варианта: N = 5 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=8 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=1 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=6 Обучающая последовательность и тестовый объект для метода ближайших соседей: 8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
User IT-STUDHELP : 19 июня 2023
1450 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 10 Выбор варианта: NC = 10 Тип классификатора: NВ = (NC mod 3) + 1 = 2 3. Метод парзеновского окна с фиксированным h. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2 2. T — треугольное K(x) = (1 − r)[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Надёжность предсказа
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Лабораторные работы 1 Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3. 2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро. ============================================= Лабораторная работа 2. «Решающие деревья» 1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса Таблица 1. Результаты N запусков Решающего дерева Максимальная глубина дерева (max_depth) Максимальное количеств
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Вариант No10 Контрольная работа Выбор варианта: N = 10 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=2 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=2 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=4 Обучающая последовательность и тестовый объект для метода ближайших соседей: 2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Контрольная работа по методам классификации Выбор варианта: N = 19 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=11. Обучающая последовательность и тестовый объект: 11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10). Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=3. Весовая функция: 3) — метод парзеновск
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19 promo
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Контрольная работа Вариант No5 Выбор варианта: N = 5 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=8 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=1 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=6 Обучающая последовательность и тестовый объект для метода ближайших соседей: 8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
User IT-STUDHELP : 19 июня 2023
700 руб.
promo
Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов
Лабораторная работа No3 “Регрессия” Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных. В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей: 1. (title) – заголовок статьи; 2. (text) – содержимое статьи; 3. (subject) – тип новости; 4. (date) – дата опубликования стать
User SibGUTI2 : 25 июля 2024
350 руб.
Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов
Онлайн Тест по дисциплине: Интеллектуальные технологии информационной безопасности.
Вопрос No1 К основным задачам машинного обучения относятся: Поиск скрытых закономерностей, генерация новых знаний Классификация, кластеризация, регрессия, уменьшение размерности и прогнозирование Обработка специализированных наборов данных, генерация новых наборов данных, сжатие данных Повышение точности прогноза по сравнению с некоторой существующей прогнозирующей или решающей моделью, виртуализация данных, оптимизация Вопрос No2 MSE это Measure Square Evaluating, оценка квадратичной
User IT-STUDHELP : 29 сентября 2023
700 руб.
promo
Контрольная работа по дисциплине: Базы данных. Для всех вариантов
Задание № 1 Создайте файл z10-1.htm с HTML-формой, позволяющей выбрать а) структуру (группа флажков "structure") и/или б) содержимое (группа флажков "content") любой таблицы базы данных study: При нажатии кнопки "Вывести" должен вызываться скрипт z10-2.php (для передачи названий таблиц используйте метод GET): № 2 Скрипт z10-2.php должен быть составным, т.е. иметь вид: Именно таким образом и происходит отделение оформления страниц сайта от обращения к СУБД и от собственно наполнения (контента)
User IT-STUDHELP : 24 ноября 2021
800 руб.
promo
Газосепаратор ГСЦ-11-1100 Общий вид-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Газосепаратор ГСЦ-11-1100 Общий вид-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
500 руб.
Газосепаратор ГСЦ-11-1100 Общий вид-Чертеж-Оборудование для добычи и подготовки нефти и газа-Курсовая работа-Дипломная работа
Модернизация молочной фермы на 400 голов ЧСУП «Радуньское» Оршанского района с модернизацией подравнивателя кормового стола
Дипломный проект РЕФЕРАТ Пояснительная записка включает 95 страниц, в том числе29 таблиц, 19рисунков, 144формулы, 25 наименования использованных литературных источников, 3 приложения и 9 листов графической части. МОЛОЧНАЯ ФЕРМА, РАСТЕНИЕВОДСТВО, ЖИВОТНОВОДСТВО, КОРОВНИК, ЗАТРАТЫ, ЭФФЕКТИВНОСТЬ, ПРОИЗВОДИТЕЛЬНОСТЬ, ТЕХНИКА, ПЕРСПЕКТИВНОСТЬ, ПОДРАВНИВАТЕЛЬ, ЭКОНОМИЧЕСКИЙ ЭФФЕКТ. Цель проекта – модернизация молочной фермы на 400 голов ЧСУП «Радуньское» Оршанского района с разработкой присп
User Shloma : 4 июня 2022
1590 руб.
Модернизация молочной фермы на 400 голов ЧСУП «Радуньское» Оршанского района с модернизацией подравнивателя кормового стола
Контрольная работа по физике №1. Вариант 4
114. Человек массой m1=70 кг, бегущий со скоростью v1 = 9 км/ч, догоняет тележку массой m2=190 кг, движущуюся со скоростью v2 = 3,6 км/ч, и вскакивает на нее. С какой скоростью станет двигаться тележка с человеком? С какой скоростью будет двигаться тележка с человеком, если человек до прыжка бежал навстречу тележке? 124. Шар массой m= 3 кг движется со скоростью υ1 = 2 м/с и сталкивается с покоящимся шаром массой m2= 5 кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно
User mortis : 21 января 2011
100 руб.
up Наверх