Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5

Состав работы

material.view.file_icon
material.view.file_icon КР.docx
material.view.file_icon ЛР1.docx
material.view.file_icon ЛР2.docx
material.view.file_icon ЛР3.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Контрольная работа
Вариант No5

Выбор варианта:
N = 5
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=8
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=6
Обучающая последовательность и тестовый объект для метода ближайших соседей:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3), (2,14,3), (1,7,3), (5,14,3), (6,6,3), (9,6,3)}: тестовый объект x’=(5,6)
Весовая функция:
1) w(i,u)=[i≤k] — метод k ближайших соседей;
k = 4
Обучающая последовательность и тестовый объект для метода построения решающего дерева:
6) (X,Y)={(7,8,1), (6,7,1), (2,1,1), (2,4,1), (9,9,1), (8,4,1), (4,7,1), (11,13,2), (6,11,2), (14,8,2), (11,7,2)}: тестовый объект x’=(6,1)

------------------------------------------------------------------------------

Задание:
1) Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
2) Построить классификатор на основе алгоритма CART построения дерева принятия решений.

=============================================
=============================================

Лабораторная работа 1. «Метод k ближайших соседей»
Вариант 05

Выбор варианта:
NC = 5
Тип классификатора:
NВ = (NC mod 3) + 1 = 3
3. Метод парзеновского окна с относительным размером окна.

Вариант функции ядра для метода празеновского окна определяется по формуле:
NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1
1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1]

Вариант файла с данными для классификации определяется по формуле:
NФ = ((NC + 2) mod 5) + 1 = 3
Файл: data3.csv.

1  Результаты тестирования
Надёжность предсказания реализованного классификатора на тестовой выборке составила 94.39 %.

=============================================

Лабораторная работа 2. «Решающие деревья»

1  Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса
Таблица 1. Результаты N запусков Решающего дерева
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) точность предсказания в
процентах
1 1 2 83,9%
2 5 10 93,2%
3 50 100 98,8%
4 100 200 99,0%
Таблица 2. Результаты M запусков леса
 Максимальная глубина дерева
(max_depth) Максимальное количество
листьев
(max_leaf_nodes) Количество деревьев
(n_estimators) точность предсказания в
процентах
1 1 1 2 77,7%
2 5 5 10 93,4%
3 50 50 100 96,9%
4 100 100 200 99,9%

2  Параметры дерева, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 200
3  Параметры леса, на которых достигается наилучшая точность предсказания
Максимальная глубина дерева (max_depth): 100
Максимальное количество листьев (max_leaf_nodes): 100
Количество деревьев (n_estimators): 200

=============================================

Лабораторная работа 3. «Регрессия»

1  Результаты работы программы
Таблица 1. Результаты 10 запусков
Номер запуска Процент правильности предсказания типа статьи
1 98.7 %
2 98.5 %
3 98.7 %
4 98.5 %
5 98.6 %
6 98.6 %
7 98.3 %
8 98.8 %
9 98.7 %
10 98.6 %
Среднее значение предсказания типа статьи исходя из 10 запусков: 98,6 %.

=============================================

Дополнительная информация

Проверил(а): Ракитский Антон Андреевич
Оценка: Зачет
Дата оценки: 19.06.2023г.

Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Контрольная работа по методам классификации Выбор варианта: N = 19 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=11. Обучающая последовательность и тестовый объект: 11) (X,Y)={ (7,2,1), (8,1,1), (8,7,1), (8,2,1), (9,9,1), (6,8,1), (13,8,2), (6,1,2),(11,8,2), (4,12,3), (7,14,3), (1,8,3), (9,6,3)}: тестовый объект x’=(13,10). Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=3. Весовая функция: 3) — метод парзеновск
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19 promo
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Вариант No10 Контрольная работа Выбор варианта: N = 10 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=2 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=2 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=4 Обучающая последовательность и тестовый объект для метода ближайших соседей: 2) (X,Y)={(2,7,1), (6,6,1), (8,6,1), (7,5,1), (5,9,1), (9,9,2), (11,2,2), (6,4,2), (10,9,2), (8,6,3)
User IT-STUDHELP : 7 октября 2023
1150 руб.
Контрольная и Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10 promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 05 Выбор варианта: NC = 5 Тип классификатора: NВ = (NC mod 3) + 1 = 3 3. Метод парзеновского окна с относительным размером окна. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 1 1. Q — квадратическое K(x) = (1 - r2)2[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Над
User IT-STUDHELP : 19 июня 2023
1000 руб.
promo
Контрольная работа по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №5
Контрольная работа Вариант No5 Выбор варианта: N = 5 Вариант выборки для метода ближайших соседей определяется по формуле: N_в=((N+13)mod11)+1=8 Вариант весовой функции определяется по формуле: N_вф=((N+7)mod4)+1=1 Вариант выборки для метода построения решающего дерева определяется по формуле: N_вд=((N*N+2)mod11)+1=6 Обучающая последовательность и тестовый объект для метода ближайших соседей: 8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3
User IT-STUDHELP : 19 июня 2023
700 руб.
promo
Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов
Лабораторная работа No3 “Регрессия” Целью данной лабораторной работы является разработка программы, реализующей применение метода логистической регрессии к заданному набору данных. В набор данных входят 2 файла, в «True» находится информация о правдивых новостных заметках, в «Fake.csv» находится информация о поддельных новостях. Каждый файл состоит из следующих полей: 1. (title) – заголовок статьи; 2. (text) – содержимое статьи; 3. (subject) – тип новости; 4. (date) – дата опубликования стать
User SibGUTI2 : 25 июля 2024
350 руб.
Лабораторная работа №3 по дисциплине: Интеллектуальные технологии информационной безопасности. “Регрессия”. Для всех вариантов
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №10
Лабораторная работа 1. «Метод k ближайших соседей» Вариант 10 Выбор варианта: NC = 10 Тип классификатора: NВ = (NC mod 3) + 1 = 2 3. Метод парзеновского окна с фиксированным h. Вариант функции ядра для метода празеновского окна определяется по формуле: NЯ = ((NC · 6 + 13) mod 8 mod 3) + 1 = 2 2. T — треугольное K(x) = (1 − r)[r ≤ 1] Вариант файла с данными для классификации определяется по формуле: NФ = ((NC + 2) mod 5) + 1 = 3 Файл: data3.csv. 1 Результаты тестирования Надёжность предсказа
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Лабораторные работы 1-3 по дисциплине: Интеллектуальные технологии информационной безопасности. Вариант №19
Вариант №19 Лабораторные работы 1 Варианты (вариант № 19): функции №3, выборки № 2, ядра № 3. 2. Метод парзеновского окна с фиксированным h. Используется прямоугольное ядро. ============================================= Лабораторная работа 2. «Решающие деревья» 1 Таблицы, показывающие % точности предсказания типа атак в зависимости от изменения параметров дерева решений и леса Таблица 1. Результаты N запусков Решающего дерева Максимальная глубина дерева (max_depth) Максимальное количеств
User IT-STUDHELP : 7 октября 2023
900 руб.
promo
Онлайн Тест по дисциплине: Интеллектуальные технологии информационной безопасности.
Вопрос No1 К основным задачам машинного обучения относятся: Поиск скрытых закономерностей, генерация новых знаний Классификация, кластеризация, регрессия, уменьшение размерности и прогнозирование Обработка специализированных наборов данных, генерация новых наборов данных, сжатие данных Повышение точности прогноза по сравнению с некоторой существующей прогнозирующей или решающей моделью, виртуализация данных, оптимизация Вопрос No2 MSE это Measure Square Evaluating, оценка квадратичной
User IT-STUDHELP : 29 сентября 2023
700 руб.
promo
Лабораторная работа №1 (LR1_4) По дисциплине: «Метрология, стандартизация, сертификация». Вариант №02.
Тема: «Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями» 6. Контрольная задача Исходные данные: Номера наблюдений 10...14; Доверительная вероятность Р=0,950; Класс точности γ=0,06% i, No наблюдения 10 11 12 13 14 f, Гц 114,27 114,24 114,26 114,23 114,28 7. Выполнение лабораторной работы Исходные данные для данного варианта Варианты заданий к лабораторной работе No вар. число наблюдений U, мВ Р 02 5 16 29 55 0,950
User freelancer : 4 декабря 2017
150 руб.
promo
Экзамен по дисциплине: Базы данных. Билет №17
Билет №17 1. Многотабличные запросы. Виды соединений таблиц. 2. Реализовать заданную схему в виде таблиц 3. База данных содержит следующие таблицы: СТУДЕНТ (№зачётной книжки, фамилия, имя, №группы, №факультета) ДИСЦИПЛИНА (№дисциплины, название, количество часов) ЗАНЯТИЕ (№занятия,№дисциплины,№группы, дата, время) ОЦЕНКА (№ занятия, №зачётной книжки, количество баллов) Написать запрос, который выдаёт расписание занятий в каждой группе.
User IT-STUDHELP : 14 июня 2019
450 руб.
Экзамен по дисциплине: Базы данных. Билет №17
Определение типа акцентуации характера подростка
Исследование проводилось 25.09.2010. Испытуемой выступила 17-летняя ученица 11 класса. Ей было предъявлено 25 групп утверждений, среди которых предложено выбрать несколько (до 3), наиболее подходящих по характеру (первое исследование) несколько наиболее неподходящих (второе исследование). Результаты первого исследования: 1. Самочувствие - 4, 8, 10 2. Настроение - 8, 11 3. Сон и сновидения - 3, 6, 8 4. Пробуждение ото сна - 11 5. Аппетит и отношение к еде - 7, 8 6. Отношение к спир
User alfFRED : 16 октября 2013
10 руб.
Химические соединения для борьбы с водной растительностью
Одним из основных путей повышения рыбопродуктивности водоемов является их мелиорация: борьба с зарастанием, заилением и со сплавинами, летование, осушка и др. Перспективным методом борьбы с нежелательной водной растительностью является применение гербицидов. В 1952–1954 годах сотрудники Института микробиологии АН СССР А.А.Егорова, М.А.Карзинкина и 3.П.Дерюгина установили, что бутиловый эфир 2,4 дихлорфеноксиуксусной кислоты (бутиловый эфир 2,4-Д) уничтожает Заросли тростника. Опыты проводились в
User GnobYTEL : 11 марта 2013
10 руб.
up Наверх