Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №18
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Контрольная работа
Вариант No18
Выбор варианта:
N = 18
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=10
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=8
Обучающая последовательность и тестовый объект для метода ближайших соседей:
10) (X,Y)={(6,5,1), (1,9,1), (1,9,1), (1,6,1), (8,4,1), (14,11,2), (13,13,2), (6,7,2), (12,11,2), (13,9,2), (9,7,2)}: тестовый объект x’=(7,3)
Весовая функция:
2) — метод экспоненциально взвешенных ближайших соседей, где предполагается ; q=0.75
k = 3
Обучающая последовательность и тестовый объект для метода построения решающего дерева:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3), (2,14,3), (1,7,3), (5,14,3), (6,6,3), (9,6,3)}: тестовый объект x’=(5,6)
Задание:
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
============================================
=============================================
Лабораторная работа
Задание:
8. Y=X^2/(〖log〗_10 X). Диапазон Х: 2-10. Контрольное значение для прогноза Х=7.5.
------------------------------------------------------------------------------
1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
2) Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученной модели стоится прогнозное значение для заданного значения независимой переменной. Исходные данные и прогнозное значение отображаются на графике, который необходимо приложить к отчёту.
Отчёт по лабораторной работе включает в себя текст задания в соответствии с вариантом, исходный код полученного скрипта с поясняющими комментариями, вывод исходных данных в табличном виде, полученное значение прогноза для заданного в варианте значения независимой переменной, полный вывод работы скрипта и график. Степень полинома для построения модели студенту необходимо определить самостоятельно.
Для защиты лабораторной работы будут предложены контрольные вопросы, соответствующие теме и дополнительное контрольное значение, для которого нужно будет вычислить прогноз при помощи полученного скрипта.
=============================================
Вариант No18
Выбор варианта:
N = 18
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=10
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=8
Обучающая последовательность и тестовый объект для метода ближайших соседей:
10) (X,Y)={(6,5,1), (1,9,1), (1,9,1), (1,6,1), (8,4,1), (14,11,2), (13,13,2), (6,7,2), (12,11,2), (13,9,2), (9,7,2)}: тестовый объект x’=(7,3)
Весовая функция:
2) — метод экспоненциально взвешенных ближайших соседей, где предполагается ; q=0.75
k = 3
Обучающая последовательность и тестовый объект для метода построения решающего дерева:
8) (X,Y)={ (5,9,1), (2,9,1), (3,7,1), (8,8,2), (14,4,2), (10,1,2), (12,4,2), (7,7,2), (12,7,2), (9,13,3), (2,14,3), (1,7,3), (5,14,3), (6,6,3), (9,6,3)}: тестовый объект x’=(5,6)
Задание:
Построить классификатор на основе метода ближайших k соседей и определить класс тестового значения.
Построить классификатор на основе алгоритма CART построения дерева принятия решений.
============================================
=============================================
Лабораторная работа
Задание:
8. Y=X^2/(〖log〗_10 X). Диапазон Х: 2-10. Контрольное значение для прогноза Х=7.5.
------------------------------------------------------------------------------
1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
2) Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее подходящая модель линейной регрессии. При помощи полученной модели стоится прогнозное значение для заданного значения независимой переменной. Исходные данные и прогнозное значение отображаются на графике, который необходимо приложить к отчёту.
Отчёт по лабораторной работе включает в себя текст задания в соответствии с вариантом, исходный код полученного скрипта с поясняющими комментариями, вывод исходных данных в табличном виде, полученное значение прогноза для заданного в варианте значения независимой переменной, полный вывод работы скрипта и график. Степень полинома для построения модели студенту необходимо определить самостоятельно.
Для защиты лабораторной работы будут предложены контрольные вопросы, соответствующие теме и дополнительное контрольное значение, для которого нужно будет вычислить прогноз при помощи полученного скрипта.
=============================================
Дополнительная информация
Проверил(а): Ракитский Антон Андреевич
Оценка: Зачет
Дата оценки: 07.07.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Оценка: Зачет
Дата оценки: 07.07.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №18 2022 г.
Alexey312451
: 18 марта 2024
Контрольная работа
Вариант No18
Выбор варианта:
N = 18
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=10
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=8
Обучающая последовательность и тестовый объект для метода ближайших соседей:
10) (X,Y)={(6,5,1), (1,9,1), (1,9,1), (1,6,1), (8,4,1), (14,11,2), (13,13,2), (6,7,2), (12,11,2), (1
800 руб.
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №17
IT-STUDHELP
: 6 июля 2023
Контрольная работа
Вариант No17
Выбор варианта:
N = 17
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=9
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=4
Обучающая последовательность и тестовый объект для метода ближайших соседей:
9) (X,Y)={(8,4,1), (9,4,1), (4,2,1), (4,1,1), (8,1,1), (11,7,2), (9,4,2), (12,5,2), (14,1,2), (6,12,
1300 руб.
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №04
IT-STUDHELP
: 6 июля 2023
Контрольная работа
Вариант No04
Выбор варианта:
N = 4
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=7
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=4
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=8
Обучающая последовательность и тестовый объект для метода ближайших соседей:
7) (X,Y)={(4,7,1), (4,3,1), (4,8,1), (8,6,2), (14,5,2), (9,4,2), (3,13,3), (8,10,3), (2,7,3)}: тестов
1300 руб.
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №21
IT-STUDHELP
: 26 декабря 2022
Лабораторная работа
Вариант No21
Задание:
Данные о машинах. Таблица состоит из 4х столбцов: год выпуска машины (диапазон 1930 – 2010), максимальная скорость машины (диапазон 60-200 км/ч), скорость разгона (за какое время скорость машины увеличивается на 1 км/ч, диапазон 0.01-1 с), мощность двигателя в лошадиных силах (диапазон 25-300). Генерировать данные необходимо приближенными к реальности. Зависимая переменная – время разгона машины до максимальной, независимая переменная – мощность двигат
1200 руб.
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №21
IT-STUDHELP
: 14 ноября 2022
Лабораторная работа: Основы работы с пакетом R
Вариант 21
Задание:
Данные о машинах. Таблица состоит из 4х столбцов: год выпуска машины (диапазон 1930 – 2010), максимальная скорость машины (диапазон 60-200 км/ч), скорость разгона (за какое время скорость машины увеличивается на 1 км/ч, диапазон 0.01-1 с), мощность двигателя в лошадиных силах (диапазон 25-300). Генерировать данные необходимо приближенными к реальности. Зависимая переменная – время разгона машины до максимальной, независимая пере
1200 руб.
Контрольная и Лабораторная работа по дисциплине: Методы машинного обучения. Вариант 10
IT-STUDHELP
: 4 апреля 2022
Контрольная работа по методам классификации
Выбор варианта: N = 9
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=1.
Обучающая последовательность и тестовый объект:
1) (X,Y)={(1,8,1), (1,3,1), (3,5,1), (1,1,1), (2,7,1), (3,8,1), (2,4,1), (8,7,2), (11,12,2), (12,14,2), (8,13,2)}: тестовый объект x’=(5,8).
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=1.
Весовая функция:
1) — метод ближайших соседей.
Вариант выборки для мет
1350 руб.
Контрольная работа по дисциплине: Методы машинного обучения. Вариант №18
IT-STUDHELP
: 6 июля 2023
Контрольная работа
Вариант №18
Выбор варианта:
N = 18
Вариант выборки для метода ближайших соседей определяется по формуле:
N_в=((N+13)mod11)+1=10
Вариант весовой функции определяется по формуле:
N_вф=((N+7)mod4)+1=2
Вариант выборки для метода построения решающего дерева определяется по формуле:
N_вд=((N*N+2)mod11)+1=8
Обучающая последовательность и тестовый объект для метода ближайших соседей:
10) (X,Y)={(6,5,1), (1,9,1), (1,9,1), (1,6,1), (8,4,1), (14,11,2), (13,13,2), (6,7,2), (12,11,2), (1
1000 руб.
Лабораторная работа по дисциплине: Методы машинного обучения. Вариант №18
IT-STUDHELP
: 6 июля 2023
Лабораторная работа
Задание:
8. Y=X^2/(〖log〗_10 X). Диапазон Х: 2-10. Контрольное значение для прогноза Х=7.5.
------------------------------------------------------------------------------
1) Создать таблицу с данными и сохранить её в текстовом файле, данные считывать из этого файла
2) Данные задаются при помощи функции
При формировании данных необходимо создать не менее 30 пар значений. Необходимо написать скрипт, который будет считывать/формировать данные, по этим данным стоится наиболее
500 руб.
Другие работы
Анализ финансовой отчетности КЕЙС 2
OLGA555
: 17 марта 2020
Интерактивная деятельность (решение кейса)
КЕЙС
Во время прохождения практики студент присутствовал при обсуждении вопроса,
связанного с дебиторской задолженностью фирмы. Менеджер утверждал: «Дебиторская
задолженность может быть любой, но при этом она не должна превышать кредиторскую
задолженность. При анализе следует принимать во внимание только сумму этого превышения». Бухгалтер настаивал: «При анализе дебиторскую и кредиторскую задолженность следует рассматривать отдельно: дебиторскую как сре
60 руб.
Индо-буддийская культура
petrovAF
: 12 сентября 2016
1. Предпосылки формирования древнеиндийской культуры
Индия - государство в Южной Азии. Население Индии весьма многолико, а природа очень разнообразна, поэтому многие исследователи делают вывод, что специфика географического положения, щедрость природы, защищенность от иноземных вторжений создали необходимые условия для обеспечения самобытности развития Индии и легли в основу создания индо-буддийского типа культуры. Индийская культура зародилась почти в такие
65 руб.
Основы трехмерного моделирования, Лабораторная работа №2, вариант №4
chavygodx
: 23 января 2026
Основы трехмерного моделирования, Лабораторная работа №2, вариант №4
400 руб.
Механизмы глубинного насоса
dimas_tm
: 23 октября 2008
ПЗ+4 чертежа (Компас)
1. СТРУКТУРНЫЙ АНАЛИЗ МЕХАНИЗМОВ
2. ДИНАМИЧЕСКИЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
3. СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА
4. РАСЧЁТ СХЕМЫ ПЛАНЕТАРНОГО РЕДУКТОРА ЭВОЛЬВЕНТНОГО ЗАЦЕПЛЕНИЯ
5. СИНТЕЗ КУЛАЧКОВОГО МЕХАНИЗМА