Контрольная работа по дисциплине: Дискретная математика. Вариант №20
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант No20
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\((AB)(AC)) = (A\B)\C б) (AB)(CB) = (AC)B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(a,3),(c,1),(c,2),(c,3)}; P2 = {(1,1),(1,4),(2,3),(3,3),(4,1),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение Pрефлексивным, симметричным, антисимметричным, транзитивным.
P Z2, P = {(x,y) | y x – 2}.
No4 Доказать утверждение методом математической индукции: 13 + 23 + 33 + ... + n3 = n2·(n+1)2/4.
No5 Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2·y6·z2, b=x4·y·z, c=x4·y8 в разложении (5·x2+2·y2+3·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3·an+1 – 28·an = 0 и начальным условиям a1=15, a2=17.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 1
0
1
1
0
1 0
0
0
0
0
1 1
0
0
1
0
1 1
0
0
0
0
0 0
0
1
1
1
1 0
0
1
0
1
0
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
=============================================
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\((AB)(AC)) = (A\B)\C б) (AB)(CB) = (AC)B.
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,2),(a,4),(a,3),(c,1),(c,2),(c,3)}; P2 = {(1,1),(1,4),(2,3),(3,3),(4,1),(4,3),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение Pрефлексивным, симметричным, антисимметричным, транзитивным.
P Z2, P = {(x,y) | y x – 2}.
No4 Доказать утверждение методом математической индукции: 13 + 23 + 33 + ... + n3 = n2·(n+1)2/4.
No5 Бригада из восьми взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее 2 человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 9, 21 или 30? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x2·y6·z2, b=x4·y·z, c=x4·y8 в разложении (5·x2+2·y2+3·z)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3·an+1 – 28·an = 0 и начальным условиям a1=15, a2=17.
No9 Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 1
0
1
1
0
1 0
0
0
0
0
1 1
0
0
1
0
1 1
0
0
0
0
0 0
0
1
1
1
1 0
0
1
0
1
0
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
=============================================
Дополнительная информация
Оценка: Отлично
Дата оценки: 07.10.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 07.10.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине: Дискретная математика. Вариант №20
SibGOODy
: 1 апреля 2018
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1⊆A×B, P2⊆B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2 ], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзит
1200 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №20
Учеба "Под ключ"
: 25 июля 2017
Вариант No20
Исходные данные см на скрине.
Задание 1. Доказать равенства, используя определения и свойства операций над множествами. Проиллюстрировать при помощи диаграмм Эйлера–Венна.
Задание 2. Даны два конечных множества: A={a,b,c}, B={1,2,3,4}; бинарные отношения P1>=A×B, P2>=B^2. Изобразить P1,P2 графически. Найти P=(P2*P1 )^(–1). Выписать области определения и области значений всех трех отношений: P1,P2,P. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекси
1200 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №20.
Доцент
: 7 января 2015
Задача № 1.
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
U = { 1, 3, 5, 7, 9 } A = { 1, 3, 9 } B = { 5, 7, 9 } C = { 4, 5 } D = { 9 }
а) ; б) ; в) ; г) ; д) .
Задача № 2.
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если студент не получил все зачёты или не сдал все экзамены, то он не получает стипендию”.
Задач
55 руб.
Контрольная работа по дисциплине: Дискретная математика
Максим400
: 4 февраля 2021
Контрольная работа
по дисциплине: Дискретная математика
Вариант 3
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
«Если на небе светит солнце, и не идет дождь, то погода подходит для пикника»
III. Для булевой функции f (x,y,z) найти методом преобразования минимальную ДНФ. По таблиц
100 руб.
Контрольная работа по дисциплине: «Дискретная математика»
Мария114
: 24 мая 2017
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
4. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найти
100 руб.
Контрольная работа по дисциплине: "Дискретная математика"
Ivanych
: 19 марта 2017
Вариант №3
Задача №1
Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а) -д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна
Задача №2
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если на небе светит солнце, и не идет дождь, то погода подходит для пикника».
200 руб.
Контрольная работа по дисциплине: Дискретная математика
BuKToP89
: 31 марта 2016
Вариант: 2
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По миним
80 руб.
Контрольная работа по дисциплине: Дискретная математика
pvv1962
: 4 апреля 2015
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий а) – д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Вейна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующие предложение.
“Если на небе светит солнце, и не идет дождь, то погода подходит для пикника”
III. Для булевой функции f(x,y,z) найти методом преобразования минимальную
ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ
75 руб.
Другие работы
Курсовой проект. Проектирование и исследование привода механизма приводной станции скребкового конвейера.
DiKey
: 30 января 2020
Курсовой проект. Проектирование и исследование привода механизма приводной станции скребкового конвейера.
Исходные данные
- Тяговая сила цепи F=2,8кН;
- Скорость тяговой цепи V=0,55м/с;
- Шаг тяговой цепи P=80 мм;
- Допускаемое отклонение скорости тяговой цепи σ=5%; - - Срок службы привода n=6лет
Содержание:
ВВЕДЕНИЕ
1 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА И ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ
1.1 Выбор электродвигателя
1.2 Силовые и кинематические параметры привода
2 РАСЧЕТ ОСНОВНЫХ ПАРАМЕТРОВ ПЛОСКОРЕМЕННОЙ П
1000 руб.
Конфликтология. Практические.
studypro3
: 7 июля 2022
Задание № 1
Задача 1
Проведите анализ межличностного взаимодействия и оцените его конфликтность в следующей ситуации.
Предприниматель обращается к налоговому инспектору: «На каком основании вы наложили штраф?». Инспектор: «Давайте разберемся». И, используя документы, разъясняет причину штрафа.
Задача 2
Проведите анализ на предмет конфликтности межличностного взаимодействия в следующей ситуации.
Руководитель спрашивает у своего заместителя: «Как вы думаете, что нужно сделать, чтобы исключить опоз
500 руб.
Выбор оптимального портфеля ценных бумаг инвестиционным отделом "ПриватБанка"
alfFRED
: 7 ноября 2012
Коммерческие банки – это учреждения, которые стали создавать в Украине в 1989 г. для привлечения денежных средств от юридических и физических лиц и размещения их от своего имени на условиях срочности, платности и возвратности, а также осуществления иных банковских операций на началах коммерческого расчета. В своей деятельности банки используют не только свой собственный, но и привлеченный капитал в виде вкладов, депозитов, межбанковских кредитов и других источников. И, как правило, привлеченные
10 руб.
Контрольная работа и Лабораторные работы №№(1,2,3) по дисциплине: Программное обеспечение инфокоммуникационных систем (часть 2-я). Вариант №2
IT-STUDHELP
: 2 декабря 2021
Контрольная работа
Разработка модели телекоммуникационной системы с помощью пакета PragmaDev Studio
1 Цель
Построить структурную и функциональную модели телекоммуникационной системы в пакете PragmaDev Studio по заданному сценарию взаимодействия элементов этой системы, используя навыки, полученные при выполнении лабораторных работ.
Задание
1. Средствами языка SDL построить структурную и функциональную модели телекоммуникационной системы, для которой в виде MSC-диаграммы задан сценарий взаим
2100 руб.