Контрольная работа по дисциплине: Дискретная математика. Вариант №2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант No2
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а)
б)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения . Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)};
P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
Задача 3
Задано бинарное отношение P ; найти его область определения и область значений. Проверить по определению, является ли P рефлексивным, симметричным, антисимметричным, транзитивным.
Задача 4
Доказать утверждение методом математической индукции:
(n3 + 11·n) кратно 6 для всех целых n0.
Задача 5
Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
Задача 6
Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
Задача 7
Найти коэффициенты при a=x3·y2·z2, b=x2·y2·z2, c=х4·z4 в разложении (2·x+3·y+5·z2)6.
Задача 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3·an+1 + 2·an = 0· и начальным условиям a1=3, a2=7.
Задача 9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
=============================================
Задача 1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм
Эйлера-Венна.
а)
б)
Задача 2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения . Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным.
P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)};
P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
Задача 3
Задано бинарное отношение P ; найти его область определения и область значений. Проверить по определению, является ли P рефлексивным, симметричным, антисимметричным, транзитивным.
Задача 4
Доказать утверждение методом математической индукции:
(n3 + 11·n) кратно 6 для всех целых n0.
Задача 5
Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
Задача 6
Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
Задача 7
Найти коэффициенты при a=x3·y2·z2, b=x2·y2·z2, c=х4·z4 в разложении (2·x+3·y+5·z2)6.
Задача 8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3·an+1 + 2·an = 0· и начальным условиям a1=3, a2=7.
Задача 9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
Задача 10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
=============================================
Дополнительная информация
Оценка: Отлично
Дата оценки: 07.11.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Дата оценки: 07.11.2023г.
Помогу с вашим вариантом, другой работой, дисциплиной или онлайн-тестом.
E-mail: sneroy20@gmail.com
E-mail: ego178@mail.ru
Похожие материалы
Контрольная работа по дисциплине «Дискретная математика». Вариант №2
Viktopu9i
: 24 апреля 2021
1. Выполнение операций над множествами
2. Выполнение операций алгебры логики
3. Решение задач теории графов.
4. Комбинаторика. Применение графовых моделей
Список литературы
1. Выполнение операций над множествами. Задание 1. Построить выражения над множествами A (круг), B (квадрат) и C (треугольник), которым соответствуют заштрихованные области на заданных диаграммах Эйлера-Венна.
Задание 2. Упростить выражение
2. Выполнение операций алгебры логики. Задание 1. Представить в СКНФ функцию
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2.
vbonina
: 17 апреля 2021
1. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
,
; ; ; .
а) ; б) ; в) ; г) ; д) .
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности
225 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант № 2
mdmatrix
: 10 апреля 2020
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
,
; ; ; .
а) ; б) ; в) ; г) ; д) .
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности
30 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2
Учеба "Под ключ"
: 8 июля 2017
1. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ пост
500 руб.
Контрольная работа по дисциплине: Дискретная математика. Вариант №2
Sunshine
: 27 октября 2016
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
II. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) найт
100 руб.
Контрольная работа по дисциплине «Дискретная математика». Вариант №2
freelancer
: 23 мая 2016
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
,
; ; ; .
а) ; б) ; в) ; г) ; д) .
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности
200 руб.
Контрольная работа по дисциплине: Дискретная математика. ВАРИАНТ №2
Kot9r
: 26 декабря 2014
1. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
Высказывание А – «Вопрос на экзамене сформулирован корректно»
Высказывание В – «Студент не знает ответ»
Высказывание С – «Экзаменатор
Контрольная работа по дисциплине «Дискретная математика», Вариант №2
Елена22
: 23 октября 2013
Контрольная работа по дисциплине «Дискретная математика», Вариант №2
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. (см. скриншот)
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если вопрос на экзамене сформулирован корректно, а студент не знает ответа, то экзаменатор недоволен”.
III. Для булевой функции f(x,y,z) найти мет
350 руб.
Другие работы
проектирование магистральных и внутризоновых волп
nik5590585
: 22 января 2015
Курсовой проект является итоговой работой, способствующей глубокому изучению теоретического материала.
1.Задание на проектирование междугородных ВОЛП
В контрольной работе необходимо:
1. Выбрать и обосновать трассу ВОЛП. Привести схему трассы.
2. Определить необходимое число каналов.
3. Рассчитать параметры оптического кабеля.
4. Выбрать систему передачи и определить требуемое число ОВ в кабеле.
5. Привести эскиз выбранного типа ОК и его основные параметры.
6. Рассчитать длину регенерационного
350 руб.
Системы и сети связи на GPSS/PC
alfFRED
: 2 октября 2013
ВВЕДЕНИЕ
Процессы функционирования различных систем и сетей связи могут быть представлены той или иной совокупностью систем массового обслуживания (СМО) - стохастических, динамических, дискретно-непрерывных математических моделей. Исследование характеристик таких моделей может проводиться либо аналитическими методами, либо путем имитационного моделирования [1-6].
Имитационная модель отображает стохастический процесс смены дискретных состояний СМО в непрерывном времени в форме моделирующего алг
10 руб.
Гидрогазодинамика ТПУ Задача 1 Вариант 6
Z24
: 30 декабря 2026
Определить в технической системе и в системе СИ плотность дымовых газов ρд, покидающих печь при температуре tºC и давлении р=735 мм рт. ст., если удельный вес их при t0=0 ºC и давлении р0=760 мм рт. ст составляет γ0 кГ/м³?
150 руб.
Лабораторная работа № 2 по дисциплине: Физика. Вариант №6 (1-й семестр)
daffi49
: 1 января 2014
Работа 4.1
Определение удельного заряда электрона методом магнетрона
Цель работы: познакомиться с законами движения заряженных частиц в электрическом и магнитном полях, определить удельный заряд электрона с помощью цилиндрического магнетрона.
Краткие теоретические сведения: магнетроном называется электро-вакуумное устройство, в котором движение электронов происходит во взаимно перпендикулярных электрическом и магнитном полях. Магнетрон является источником электромагнитного излучения СВЧ диапазо
60 руб.